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1 Introduction

There has been an increasing interest in the electromagnetic waves interacting with chiral me-
dia which are mainly characterized by eigenmodes with right and left-handed polarization and
different velocity [1]-[3]. Research work on chirality introduced in periodic structures also has
gained attention in recent years [4]. [5]. One of the potential applications is to design the polar-
ization of diffracted modes of gratings. In the frequency region of radio waves, planar structures
can be alternatives to periodically-shaped or modulated chiral media. A FSS structure with an
isotropic chiral slab has been reported [6]. Artificial chiral materials in this frequency region
however inevitably show the electrical anisotropy, and the optical axes can also be the design
parameters. Authors have analyzed an isotropic and uniaxial anisotropic chiral planar structures
with strip gratings where the possibility of designing gratings which diffract modes with specific
polarization has been investigated [7], [8], [9]. In this paper, diffraction from an anisotropic chi-
ral slab with a periodically-apertured conducting plane are analyzed in 4 x 4 matrix form [9]. In
the numerical computation, the polarization characteristics of diffracted waves are investigated
considering the design parameters.

2 Description of the problem

The configuration of the problem is shown in the Figure 1. A lossless chiral slab region 2
(anisotropic region in general) with thickness D is assumed to be placed between semi-infinite
isotropic achiral dielectric regions 1 and 3 where the relative permeability is unity all through
the regions. Considering that isotropic dielectric media are particular cases of anisotropic chiral
ones, the chirality admittance and relative permittivity for the region [ (I = 1,2, 3) are generally
expressed by 3 x 3 tensors (§;) and (¢;) where both (£;) and (£3) are null tensors and (e1) and
(€3) are diagonal ones with elements of € 4, = €4y = €., = ¢ (I = 1,3). A thin conducting
plane with periodic array of rectangular apertures with periodicity Ay and Az and sizes Ly and
Lz in Y and Z direction respectively is assumed to be placed on the boundary X = 0. XZ plane
is assumed to be the plane of incidence where a TE or TM plane wave illuminates under the
incidence angle 0. In the following anaysis the time harmonic dependence exp(iwt) is assumed.
Electromagnetic fields in the region I (I = 1,2, 3) satisty the constitutive relations as follows [1].

D = ey((e)) + (1)*)E —iv/éopo(n)H, B =i/eouo(n)E + poH, (1)

(n) = Zo(&), Vo= Zio - ﬁ (2)

These equations and Maxwell’s equations are combined to the following relations:

curlV/YoE = (n)VYoE — iv/ZoH, curly/ZoH =i[() + (1)*]VY0E + (n)VZoH  (3)



where the space variables expressed by upper cases X, Y and Z are normalized by wave number
in vacuum kg to be transformed into lower-case ones, putting x = ko X, y = koY and z = ko Z.
The same normalization is made in the operator curl

3 General solutions for fields

The total fields in each region are given by the superposition of the primary electric and magnetic
fields EY and HY (t = z,y, z) which exists even if the apertured plane are replaced by a ground
plane and the scattered fields £} and H{ (t = x,y,2) from magnetic currents in the apertures
which can be expanded in terms of Floquet modes. The conditions of phase matching at the
boundaries for the incidence of a plane wave give the forms of the fields as

VYoE] (2,y,2) = ef (w)e™ %, VZoH[ (2,y,2) = hi (x)e” "%, (4)
VYOE; (2,9,2) = Z Z et (w)e ™ @I (ny,2) = Z Z R (@)e ™ ImvHen2) - (5)
A A .
Gm =Mm-—, Sp=80+n-—, So=+/leisinf (t=u,y,z2) (6)
Ay AZ

where ) is the wave length in vacuum. The coefficients €7 (z), h(z) in Eq.(4) and €5, (),
smn () in Eq.(5) (t =y, z) are expressed here in vector form as

e:;? ;mn

fP(z) = e? P (z) = <6£) £ () = €lmn £ (2) = <eimn> (7)
w | ) Im Wy | T Wown )
h% B mn

Introducing the above scattered fields into Eq.(3) derives the following coupled wave equations
for the (m, n)th Floquet mode in the region [ (I = 1,2,3) as follows [8]-[9]:

d
%f?snn = i(Rl,mn)fviln7 mn - (Kl mn)fmn (8)

where (Rj ;) and (K ) are 4 x 4 and 2 x 4 matrices which show the mode coupling in each

region. The solutions of Eq.(8) in the region I (I = 1,2,3) are given in matrix form as
inftt (z— w+)
¢t 0)

inlt (z—w

s+ s, R+
R e lLmn 1 s s 9! n st 9i,mn
fmn(m) = (Ul,'m") in B (z—w?) gl,mn? gl,mn = ls’— ) gl,mn = ls’ L+ ) (9)
r 1 gl,mn l,mn
(0) eimf:;ln(z—wl_)

+ U Uin) R+ L+ ,R- +_, - £_ .+
(Ul,mn) = (Uh+ ) (Uh— ) (vl ,mn vl mn Ul mn Ul 'mn)? Wy =Wy = 07 Wz = Wy = _kO'D (10)
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/ﬁﬁj{n, K,lL;;n, /ﬁf;;n, mlen in Eq.(9) and ’vl L 'ulL;'r'm, 'ulRmn, 'vlen in the 4 x 4 matrix (U )
are elgenvalues and eigenvectors of the matrix (Rl,mn) respectlvely The superscripts R+ and
L+ denote right and left-handed elliptically-polarized eigenmodes propagating in +z directions
respectively. Each glsfnn is an unknown column vector defined at z = wfE where gf * for the
primary fields is also defined. The solutions of the primary fields f?(z) with unknowns g} in
region [(l = 1,2, 3) are also derived by setting m = n = 0 in Eq.(9). In an isotropic achiral region,
eigenmodes are separated into TE and TM linearly-polarized modes or right and left-handed
circular polarization modes with the same wave numbers [7].

4 Method of solution

The primary fields are distributed in the region 1 (x = 0) and satisfy the condition of y and
z components of electric fields being equal to zero at z = 0. Considering this condition in the



form of Eq.(9) yields linear equations by which the unknowns g}* are determined assuming
g =0 0)” and (01)” for TE and TM incidence respectively. The scattered fields depend on
the magnetic currents My(Oi,y, z) and M,(0%,y, z) in the apertures at 2 = 0% which can be
expanded in terms of Floquet modes with coefficients cymn(()i) and ¢, (0F) respectively in the
same form as in Eq.(5):

VIOMU(0%,y,2)= D0 D cumn(0%)e I 0 (0F) = €0nn (0) x (£40) (1)

m=—oon=—oo

where(t,u) = (y,2) or (z,y) and %, is the unit vector in x direction. The scatterd fields satisfy
the conditions of continuity of y and z components of fields at X = —D and those of waves in the
regions 1 and 3 propagating only in +z and —z directions respectively. These conditions in the
form of Eq.(9) yield linear equations to determine the solutions g; .., and g, . (I =1,2,3)
for the assumption that (¢ymn(0"), c2mn(07)) = (1,0) and (0,1) respectively. Combining these
and Eq.(9) leads to the expression of the scattered fields in the region [ (I = 1,2, 3):

s (LU) _ { Gl,mn,y(«'f)cymn(o—i—) + Gl,mn,z(x)czmn(0+) (LU = 0)

mn Gl,mn,y(fl;)cymn(o_) + Gl,mn,z(x)czmn(o_) (:U = 0) ’ (12)

it (a:—w+)

e e lLLmn 1 O
gl’ym"t%ﬂ; inEt (e—wit) )
€ mn P
Gl omni(x) = Lamnt\L = (Ui.mn e R _ 7 , t=y, z. (13
1mn,t (2) kamnt(z) (Ut,mn) e“‘fmn(”‘wz) 9imn,t Y (13)
Gl,zmnt(:t) (O) einllz;n(ac—wl_)

The remaining unknown magnetic currents M,(0F,y, 2) and M,(0%,y, 2) in the apertures at
xz = 0% can be approximated by the expansion in terms of a set of linear independent basis
functions @, (y, 2) (k! = 1,..., N’ t =y, 2) defined in the apertures with unknown coefficients
Cyr (k' =1,2,...,Nt, t = y,2). The primary fields and the scattered fields Eq.(12) with the
approximated currents form the boundary condition of y and z components of magnetic fields
being continuous in the apertures at 2 = 0F. Applying the Galerkin’s Method to this condition
in the spectral domain yields a system of linear equations to determine the unknown coefficients
for the magnetic currents.

5 Numerical results

In the following numerical calculation the Root Top basis functions are used for the Galerkin’s
procedure as in [10] where 16 x 16 segmentation is made for each of the rectangular apertures, and
Floquet mode expansion in Eq.(5) is truncated at m, n = £90 where graphical representation of
results are possible. A uniaxial chiral medium is assumed for the region 2 where the optical axis
is in XZ plane and makes the angle o = 42 (degree) to the positive X direction with Z axis. The
values of the chirality and the relative permittivity along the optical axis and those along the
directions normal to it are assumed to be & = 7.0 x 1074(S), e, = 1.35 and &, = 1.0 x 107%(S),
€, = 1.2 respectively. The periodicity and the sizes of the apertures are assumed to be Ay = 0.7\
and Az = 1.1\, Ly /Ay = Lz/Az = 0.6 respectively. The regions 1 and 3 are assumed to be
air. Figure 2 (a), (b) and (c) show the ellipticity and the orientation angles of the polarization
as defined in [8] and the diffraction efficiencies of the transmitted (0, 0)th and (0, -1)th modes
respectively for TE incidence with § = 30 (degree). At around D = 2.9\, ellipticity angles of
both modes are almost zero and difference of the orientation angles comes to be 90 degree with
the same extent of the diffraction efficiencies. This implies the transmitted wave is almost evenly
splitted into the dominat and the diffracted modes with orthogonal linear polarization. Other
examples of design parmeters will be shown in the presentation.



6 Conclusion

Diffracted waves from an anisotropic chiral slab with a periodically-apertured conducting plane
have been analyzed in 4 x 4 matrix form. Numerical results have shown the polarization char-
acteristics of diffracted waves with the design parameters.
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Figure 1: Geometry of the problem
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Figure 2: Polarization characteristics of tramsmitted waves



