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1. Introduction
In this paper, we will analyze the excitation by a microstrip transducer on the in-plane and obliquely

magnetized YIG by letting the current density be an unknown function and numerically solving it by
means of the integral kernel expansion method which has been developed by our group[1] and is appro-
priate in solving the mixed boundary value problems.

Magnetostatic waves (MSWs), which propagate in a magnetized YIG film, have potential possibil-
ities of application to signal processing in microwave band[2]. In a magnetized YIG film in the plane,
if the bias magnetic field is perpendicular to the wave vector of MSW, then the Magnetostatic surface
wave(MSSW) propagates, while if the magnetic field is parallel to the wave vector, the Magnetostatic
backward volume wave(MSBVW) does. For the case that the magnetic field is neither perpendicular
nor parallel, in other words, in an obliquely magnetized YIG film, both MSSW and MSBVW modes
propagate, which is called MSSW/MSBVW mode, and the characteristics of such a MSSW/MSBVW
mode continuously changes depending on the angle of magnetization[3].

In order to verify the validity of the present method, we will compare our numerical results with the
experimental ones.

2. Theoretical Analysis
We consider the geometrical configuration of the present problem as shown in Fig.1, the left panel

of which is the top view and the right one is the cross-sectional view. The metal strip having the width
2w and the infinitesimal thickness is constructed on a YIG film with thicknessd. The metal plane exists
at y = −d − h as the ground conductor of the microstrip transducer. The layer-configuration goes
infinitely alongy- andz-directions, and the field is assumed to be independent ofz, or ∂/∂z = 0. The
external direct magnetic field is applied in the direction making an angleθ with z-axis, and then the
MSW propagates in±y-direction. In this case, the following MSW modes can propagate depending on
theθ: (1) MSSW propagates for the magnetization perpendicular to the wave vector of MSW(θ = 0◦);
(2) MSBVW, for the magnetization parallel to the wave vector(θ = 90◦); (3) MSSW/MSBVW, which
propagates for the oblique magnetization of the YIG film (0◦ < θ < 90◦).
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Figure 1: Configuration for analysis
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From the configuration a pair of the Fourier transform between the space and the wave number
domains is defined as follows:

f(y) =
∫ ∞

−∞
f̃(k)e−jkydk, f̃(k) =

1
2π

∫ ∞

−∞
f(y)ejkydy. (1)

It is assumed that magnetostatic approximation,∇×H = 0 is valid and that the time factor isexp(jωt).
The permeability tensor of in-plane magnetized YIGs is given by

µr =


 µ −jκ2 jκ3

jκ2 µ2 µ3

−jκ3 µ3 µ4


 , (2)

whereκ2 = κ cos θ, κ3 = κ sin θ, µ2 = µ cos2 θ + sin2 θ, µ3 = (1 − µ) cos θ sin θ, µ4 = µ sin2 θ +

cos2 θ, µ = 1 − ΩH

Ω2 − Ω2
H

, κ =
Ω

Ω2 − Ω2
H

,Ω =
ω

γM
,ΩH =

γH0

γM
, andH0,M, ω, andγ are the

magnitude of the bias magnetic field, the saturation magnetization of the YIG, angular wave frequency,
and the gyromagnetic ratio, respectively.

With the use of the usual boundary conditions that the tangential component of magnetic field and
the normal component of magnetic flux density are continuous, we can obtain the relation between the
current density flowing in the metal strip,Jz(y), and the magnetic flux density,Bx(y) on thex = 0
plane, in the wave number domain,B̃x(k) = jµ0G(k)J̃z(k), where

G(k) = −s
(µq − κ2s)(µq + κ2s + tanh |k|h) − (µq + κ2s)(µq − κ2s − tanh |k|h)e−2q|k|d

(µq − κ2 + 1)(µq + κ2 + tanh |k|h) − (µq + κ2 − 1)(µq − κ2 − tanh |k|h)e−2q|k|d ,

(3)

andq =
√

µ2

µ
, s =

k

|k| . It is noted that the functionG(k) has a pole ink > 0 andk < 0, respectively.

Taking the inverse Fourier transform and considering thatBx(y) = 0 in the metal strip region (
−w � y � w ) lead to the following equation:∫ ∞

−∞
G(k)J̃z(k)e−jkydk = 0, −w � y � w. (4)

This Fourier integral contains the unknown current densityJ̃z(k), and we can solve Eq.(4) by using the
integral kernel expansion method.

First step of this method is to expand the integral kernel of Eq.(4),e−jky into a series of the Legendre
polynomials over the interval−w � y � w:

e−jky =
∞∑

m=0

(−j)m(2m + 1) jm(kw)Pm

( y

w

)
. (5)

Substituting Eq.(5) into Eq.(4) and invoking orthogonality of the Legendre polynomials, we can obtain∫ ∞

−∞
G(k)J̃z(k)jm(kw)dk = 0, m = 0, 1, · · · . (6)

Next, we expand the unknown functionJz(y) into a series of orthogonal polynomials with unknown
coefficients.

Jz(y) =
{

1 −
( y

w

)2
}− 1

2
∞∑

n=0

anTn

( y

w

)
Π

( y

w

)
, whereΠ(x) =

{
1, |x| � 1
0, |x| > 1

, (7)

and Tn(z) is the Chebyshev polynomial andan(n = 0, 1, · · · )’s are the unknown coefficients to be
determined. The Fourier transform of Eq.(7) is given by

J̃z(k) =
w

2

∞∑
n=0

anjnJn(kw). (8)
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Substituting Eq.(8) into Eq.(6) we can reduce the Fourier integral containing the unknown function into
linear equations with respect to the unknown coefficients:




L00 L01 · · · L0n

L10 L11 · · · L1n
...

...
...

Lm0 Lm1 · · · Lmn







a0

a1
...

an


 = 0, whereLmn = jnw

∫ ∞

−∞
G(k)jm(kw)Jn(kw)dk, (9)

which can be calculated numerically, then we can determine the coefficientsan’s to obtain the current
density in Eqs.(7) and (8).

Calculation of the infinite integrals of Eq.(9) is not straightforward because the integrands oscillate.
We describe the techniques to overcome this difficulty. Consider the integral over the positivek. As

k → +∞, the functionG(k) approaches exponentially to the constant,G+ = − µq − κ2

µq − κ2 + 1
. Thus, we

separate the integral into two parts as follows:

L+
mn =

∫ ∞

0

{
G

( z

w

)
− G+

}
jm(z)Jn(z)dz + G+

∫ ∞

0
jm(z)Jz(z) dz (10)

It is found here that the integrand of the first term of Eq.(10) vanishes exponentially and the convergence
of the numerical computation can be obtained easily. The second term of Eq.(10) can be calculated
analytically, and the result is given by

π Γ(m+n+1
2 )G+

2Γ(m−n+2
2 ) Γ(n−m+1

2 ) Γ(m+n+2
2 )

. (11)

Note that the result is identically equal to 0 whenn −m − 2 or m − n− 1 is even. The integration over
the negative half-infinite interval can be done in a similar manner.

3. Numerical and experimental results
Experiments were performed to verify the validity of the present theory. Using a vector network ana-

lyzer(HP8720C), we measured the S21 of the transducer assuming the attenuation is due to the excitation
of MSWs. The YIG used in this experiment is 20µm thick and 8 mm wide. The metal strip which is 125
µm wide, orw = 62.5µm in Fig.1, is directly constructed by evaporating aluminum on the YIG surface.
The distance between the metal strip and the ground plane is about 400µm, for which the characteristic
impedance and the effective dielectric constant of this transmission line are approximately195Ω and
8.63, respectively, if the YIG is regarded just as a dielectric.

Figure 2 shows the experimental results ofS21 of the transducer changing the angle of the biased
magnetic field,θ, with constant magnitude, 78.0[kA/m] ( = 980 Oe). The frequency band where MSSW
exists forθ = 0◦ is from 4.60 GHz to 5.24 GHz, and forθ = 90◦ MSBVW exists from 2.74 GHz to 4.60
GHz. It is known that, asθ increasing, the upper limit of MSSW band decreases and the lower limit of
MSBVW band increases[3], and indeed the tendency can be found in Fig.2.

Figures 3, 4 and 5 show the numerical results estimated by the present method and a conventional
one which is based on the assumption that the current distributionJz(y) is constant in the strip, and the
experimental results forθ = 0◦, θ = 20◦ andθ = 30◦, respectively. The used parameters are same as the
above experiments and we truncate the expansion with respect ton in Eq.(8) by 10 terms. As you can
see, the numerical results of the present method generally agree with the experimental ones. However,
there is a serious discrepancy between the conventional and the experimental results, in particular, in the
upper frequency of MSSW band. This tendency seems to be more prominent for largerθ angle.

The experimental data exhibit 1∼ 2 dB greater loss than the numerical results by using the present
method. This may be due to the undesirable return loss at transition between the the coaxial and mi-
crostrip line, radiation into free-space, or conductive loss of the metal strip. The notches exist at about
4.60 GHz, which corresponds to the lower limit of MSSW band. In the magnetostatic approximation, the
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wavelength of MSSW tends to infinity toward the lower limit of MSSW band, and hence the approxima-
tion may not be always good near the lower limit. In the experiment, there exists a ground plane, which
might affect the MSSW because the wavelength becomes longer around this lower limit.
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Figure 2:S21 of the test device changing the an-
gle of the magnetic field
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Figure 3: Numerical and experimental results for
θ = 0◦
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Figure 4: Numerical and experimental results for
θ = 20◦
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Figure 5: Numerical and experimental results for
θ = 30◦

4. Conclusion
We have presented the integral kernel expansion method which is an integral equation solver, as the

application to analysis of the MSSW excitation in the in-plane magnetized YIG film. This method allows
us to formulate the present problem elegantly and solve it successively. The agreement of the numerical
results by the present method with the corresponding experiment is generally good, while there is still a
significant discrepancy between the conventional ones and the experiment. It has been evident that the
integral kernel expansion method used in this paper is appropriate for the analyses of MSW excitation
problems.
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