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1. Introduction
Solving the Laplace equation on a set is an old mathematical problem [1]. Physically we can interpret

it as a vibration of string, membrane, behavior of resonator and also a microstrip patch antenna. Problem
wasn’t solved analytically yet except some trivial arrangement (rectangle, circle..). To solve such equation
we need to find an eigenpar which consist of a set of eigenvalues and eigenfunctions. Such eigenfunctions
can represent distribution of accoustic pressure or electric field for example. Eigenvalues correspond to
resonant frequency. In this paper we present solutions of Helmholz wave equation on 2D set with fractal
boundary. Recent works show that fractal boundary strongly modify the behavior of resonators [2], [3] -
distribution of eigenfunctions and changes of vibrational spectrum (eigenvalue distribution). Cavity model
of microstrip patch antenna is considered.

2. Microstrip patch antennas with fractal boundary

2.1 Cavity model review
The Helmholz wave equation for TM modes of the microstrip patch antenna of the shape Ω lying in xy

plane has the form [4]
(∆ + k2

d)Ez = 0
∂Ez

∂n
= 0

(1)

where kd = ω
√
µε being the wavenumber in dielectric and ∂Ez

∂n = 0 is a Neumann condition on the
boundary ∂Ω (perfect magnetic wall). The solution of equation (1) is so called eigenpar - collection of
eigenvalues k2

n a and eigenfunctions ψn. Electric field is assumed to be only in the z-direction, Ez = ψn.
Index n means the mode number. Resonance condition is

k2
n = k2

d (2)

and resonant frequencies

fn =
kn

2π
√
µε

(3)

2.2 Koch microstrip patch antenna
This antenna is based on the Koch-snowflake fractal (fractal dimension of the boundary is Dbound

.=
1.26) obtained by recursive algorithm. Equation (1) is solved using finite element method for iterations 1-5
(see Fig. 1), d was choosen to be 100 mm. The spectrum1 (eigenvalue distribution) of this structures is
shown on Fig. 2, parameter in this graph is a fractal iteration.

Patch Koch0 Koch1 Koch2 Koch3 Koch4 Koch5 Cir1 Cir2

Area[cm2] 43.3 57.7 64.1 67 68.3 68.8 68.3 100.7

Tab. 1 The areas of discussed microstrip patch antennas (d=100 mm)

1Calculated spectrum is discrete but in figures is shown as continuos for lucidity
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Fig. 1 Koch snowflake iterations (Koch0-Koch5), fractal boundary dimension Dbound
.= 1.26
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Fig. 2 Spectrum of Koch snowflake patch resonators (iterations 0-5)

Another circular-shaped patches were added into graph for confrontation. Cir1 patch has the same area
as Koch4 and Cir2 patch has the radius given by cimcurscribed circle around snowflake (the area is hence
necessarily bigger than any iteration). We can compare behavior of patch antennas with the same area
but with different boundary (euclidean vs. fractal). Looking into Fig. 2 we can observe that although
Koch4 and Cir1 have the same area, Koch4 resonates on lower frequencies (see difference df in Fig. 2).
Such phenomenon is rather observed when comparing higher modes, because lower modal functions doesn’t
”see” boundary irregularities, its scale is too rough. Influence of fractal geometry manifests on the spectrum
character also (frequencies are compressed to lower ones).



2.3 ”Drum” microstrip patch antenna
Another interesting structure is created aplying generator from Fig. 3 to rectangle. The fractal dimension

a

Iniciator Generator

d

Fig. 3 Fractal drum generator

can be controlled (Dbound = 1÷ 1.5) by varying parameter a using equation Dbound = log(4+4a)
log 4 .
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Fig. 4 Fractal drum with Dbound = 1.0− 1.5 (step 0.1), iteration=3
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Fig. 5 Spectrum of fractal drum patch antennas with different boundary dimension and constant iteration=3



Again, we can see influence of the fractal boundary to eigenvalue distribution. In this case fractal iteration
is constant (=3) and the variable is the fractal dimension of the boundary Dbound. From the Fig. 5 follows
that with the increasing fractal dimension of the boundary the resonant frequencies decreases and spectrum
behaves more ”strange”. Of course the density of states (modes) also increases (until a given eigenvalue
k2

n there is more and more excited modes, see dotted arrows in Fig. 5).

Fig. 6 Localized modes ψn for Koch5 patch, mode numbers n=26 resp. n=38

3. Conclusion
Behavior of resonators with fractal boundary was introduced computing the vibrating spectrum, a set

of eigenvalues, which are related to the resonant frequencies. Using this method and considering the cavity
model, main parameters of microstrip patch antennas with fractal boundary can be studied (resonant fre-
quencies, input impedance, radiating pattern). Our partial results show that fractal boundary strongly
modify the behavior of resonators, primarily there is a frequency shift when comparing the higher modes.
Resonant frequencies are shifted both in two presented cases: creating a fractal boundary by iterations and
increasing fractal dimension of resonator’s boundary. Another interesting fact is the localization of certain
high order modes (two interesting cases are shown at Fig. 6 for information). All these properties can be
useful for design a novel types of microstrip patch antenna structures.
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