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1 Introduction

In recent years, there has been an increasing interest in the development of new materials
with characteristics which may not be found in nature. Examples are meta-materials [1][2],
composite medium, left-handed medium [3][4], and chiral medium. They have a broad range
of applications including artificial dielectric, lens, absorbers, antenna structures, optical and
microwave components, frequency selective surfaces, and composite material. In addition, the
left-handed material has a negative refractive index, and its permeability and permittivity are
both negative, and appear to be capable of producing a perfect lens [5], though its limitations
have been pointed out [6].

In these applications, it is important to describe the material characteristics in terms of the
physical properties of the inclusions. This paper presents a generalized matrix representation
of the macroscopic constitutive relations based on the quasi-static Lorentz-Lorenz theory. The
constitutive relations are given by [
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where =
ε,

=
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µ are 3×3 matrices.

The medium with the constitutive relation (1) is called the “bi-anisotropic medium” [7]. If
=
ε,

=

ξ,
=

ζ, and =
µ are scalars, this is called the “bi-isotropic” or “chiral” medium. There are two

important questions. First is how to obtain these parameters =
ε,

=

ξ,
=

ζ, and =
µ for a given material.

The second is how to describe the wave characteristics in such a medium.
In this paper, we address the first question. We derive the explicit expressions of these ma-

trix parameters for a given configuration of the inclusions in a host material. The inclusions are
arranged in a three-dimensional array and consist of non-magnetic materials with complex dielec-
tric constants. The derivation is based on the quasi-static Lorentz-Lorenz theory and, therefore,
applicable to inclusions whose sizes and spacings are small compared with a wavelength.

2 Formulation of the Problem

Let us consider a medium consisting of a three-dimensional periodic array of inclusions in a
host material (Figure 1). Each inclusion may be a wire, a ring, a helix, or a split ring proposed
by Pendry et al [1]. The spacings along x, y, and z directions are a, b, and c respectively.
Under the influence of applied electromagnetic field, the inclusion produces electric and magnetic
multipoles. In this paper, we limit ourselves to the electric and magnetic dipoles expressed in a
quasi-static approximation.

The electric and magnetic dipole moments, p̄e and p̄m, of each inclusion is produced by the
local field [Ē�, H̄�] which is the field due to all other dipoles surrounding this particular inclusion.
The dipole moments are then given by the generalized polarizability matrix [=α].[
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Figure 1: Three-dimensional array of inclusions
whose dielectric constant is εr and conductivity
is σ. Host material has the dielectric constant εb.
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Figure 2: Current J̄e on the inclusion pro-
duced by the local field Ē�. Current J̄m is
also produced by the local field H̄�.

Note that p̄e, p̄m, Ē�, and H̄� are all 3×1 vectors and [=α] is a 6×6 matrix.
The local field [Ē�, H̄�] are incident upon the inclusion and produce the current [J̄e, J̄m], which
in turn produce the electric dipole moment p̄e and the magnetic dipole moment p̄m given by
(Figure 2).
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Now we have the final expressions for all the components of the polarizability matrix [=α].
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Let us next consider the local field [Ē�, H̄�]. As discussed above, the local field acts on the
inclusion and produces the electric and the magnetic dipoles. The local field consists of the
applied field [Ē, H̄] and the interaction field [Ēi, H̄i].[
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The interaction field is produced by all the dipoles except the particular inclusion under con-
sideration. For a three-dimensional array of inclusions, the interaction field [Ēi, H̄i] has been
obtained and is given by [7]
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where N is the number of inclusions per unit volume and is equal to N = (abc)−1, 0̄ = 3×3
null matrix, εb is the relative dielectric constant of the host material, and C̄ is the interaction

constant matrix =


 Cx 0 0

0 Cy 0
0 0 Cz


. The interaction constant matrix [C̄] for a three-dimensional
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Figure 3: Split ring resonator (SRR) and definitions of distances.

array of dipoles with the spacings a, b, and c in the x, y, and z directions respectively (Figure. 1),
has been obtained [8].
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K0 is the modified Bessel function, and the term with n = s = 0 is excluded.
Substituting (2) and (7) into (6), we obtain[
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where [
=

U] is 6×6 unit matrix. Finally, D̄ and B̄ are given by[
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]
+ N[=

α]
[=

U − N[
=

C][=
α]

]−1
, (11)

[Ū] is 3×3 unit matrix.
This is the final expression for the generalized constitutive relations for a three-dimensional
array of inclusions under quasi-static approximation. This is the generalization of Lorentz-
Lorenz formula and leads to the Maxwell-Garnett formula for spherical inclusions.

3 Split Ring Resonator

As an example, we consider a three-dimensional array of the Pendry’s split ring resonators
(SRR) (Figure 3). In this example, H̄� = H�zẑ and Ē� = E�xx̂ + E�y ŷ. Therefore, writing
=
ε = [εij],

=

ξ = [ξij ],
=

ζ = [ζij ], and =
µ = [µij] with i and j = x,y,z, we calculated (Figure 4):

εxx = ε′xx − jε′′xx µzz = µ′
zz − jµ′′

zz

εyy = ε′yy − jε′′yy
(12)

All other elements are negligibly small. It is interesting to note the resonance behaviors discussed
by Pendry, Smith and others. Also noted are the negative permeability and permittivity which
have strong dispersive characteristics as already discussed by several workers.
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Figure 4: Plot of µ and ε of a SRR medium. r = 1.5mm, w = 0.8mm, d = 0.2mm, a = b =
8mm, and c = 3.2mm. The conductivity of the ring is 5.8× 107[S/m]. The thickness of the ring
is much greater than the skin depth.

4 Conclusions

In the paper, we derived the generalized constitutive relations (11) for meta-materials con-
sisting of a three-dimensional array of inclusion of arbitrary shape. This formula is derived
under quasi-static approximation and is applicable to the spacing between the inclusions, which
are small compared with a wavelength. Some numerical examples are shown to illustrate the
usefulness of the formulation.
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