講演名 | 2018-11-10 赤外線センサーに基づく位置認識の短時間学習 大田 亮(会津大), 趙 強福(会津大), |
---|---|
PDFダウンロードページ | ![]() |
抄録(和) | ?The aim of this paper is to reveal the usefulness and possibility of a sparse infrared sensor array for building a smart home. Our previous results show that human locations can be recognized very accurately using the sensor array data. However, the results were obtained using k-fold cross-validation. That is, the percentage of data used for training is relatively large, and the test results may not show the generalization ability correctly. In this paper, we use a small training set that contains data observed in a completely different time interval as the test data. This means that the testing data are completely unknown for the machine learner?. New experimental results show that training data obtained in a surprisingly short time are enough to build a machine learner that can recognize specific human locations (when other factors are fixed). This fact provides important insights for our future studies to shorten experiment time and to realize a real smart home. |
抄録(英) | ?The aim of this paper is to reveal the usefulness and possibility of a sparse infrared sensor array for building a smart home. Our previous results show that human locations can be recognized very accurately using the sensor array data. However, the results were obtained using k-fold cross-validation. That is, the percentage of data used for training is relatively large, and the test results may not show the generalization ability correctly. In this paper, we use a small training set that contains data observed in a completely different time interval as the test data. This means that the testing data are completely unknown for the machine learner?. New experimental results show that training data obtained in a surprisingly short time are enough to build a machine learner that can recognize specific human locations (when other factors are fixed). This fact provides important insights for our future studies to shorten experiment time and to realize a real smart home. |
キーワード(和) | シニアケア / スマートホーム / 機械学習 / 赤外線センサー |
キーワード(英) | Smart Home / Machine Learning |
資料番号 | KBSE2018-35,SC2018-30 |
発行日 | 2018-11-02 (KBSE, SC) |
研究会情報 | |
研究会 | KBSE / SC |
---|---|
開催期間 | 2018/11/9(から2日開催) |
開催地(和) | 神戸大学 瀧川記念学術交流会館 |
開催地(英) | |
テーマ(和) | 「ソフトウェア/サービスとAI」, 一般 |
テーマ(英) | |
委員長氏名(和) | 粂野 文洋(日本工大) / 中村 匡秀(神戸大) |
委員長氏名(英) | Fumihiro Kumeno(Nippon Inst. of Tech.) / Masahide Nakamura(Kobe Univ.) |
副委員長氏名(和) | 中川 博之(阪大) / 菊地 伸治(会津大) / 山登 庸次(NTT) |
副委員長氏名(英) | Hiroyuki Nakagawa(Osaka Univ.) / Shinji Kikuchi(Univ. of Aizu) / Yoji Yamato(NTT) |
幹事氏名(和) | 猿渡 卓也(NTT) / 木村 功作(富士通研) / 細野 繁(NEC) / 木村 功作(富士通研) |
幹事氏名(英) | Takuya Saruwatari(NTT) / Kosaku Kimura(Fujitsu labs.) / Shigeru Hosono(NEC) / Kosaku Kimura(Fujitsu Lab.) |
幹事補佐氏名(和) | 高橋 竜一(茨城大) / 田辺 良則(鶴見大) |
幹事補佐氏名(英) | Ryuichi Takahashi(Ibaraki Univ.) / Yoshinori Tanabe(Tsurumi Univ.) |
講演論文情報詳細 | |
申込み研究会 | Technical Committee on Knowledge-Based Software Engineering / Technical Committee on Service Computing |
---|---|
本文の言語 | ENG-JTITLE |
タイトル(和) | 赤外線センサーに基づく位置認識の短時間学習 |
サブタイトル(和) | |
タイトル(英) | Short Time Learning in Location Recognition Based on Infrared Sensor Array |
サブタイトル(和) | |
キーワード(1)(和/英) | シニアケア / Smart Home |
キーワード(2)(和/英) | スマートホーム / Machine Learning |
キーワード(3)(和/英) | 機械学習 |
キーワード(4)(和/英) | 赤外線センサー |
第 1 著者 氏名(和/英) | 大田 亮 / Ryo Ota |
第 1 著者 所属(和/英) | 会津大学(略称:会津大) University of Aizu(略称:UOA) |
第 2 著者 氏名(和/英) | 趙 強福 / Qiangfu Zhao |
第 2 著者 所属(和/英) | 会津大学(略称:会津大) University of Aizu(略称:UOA) |
発表年月日 | 2018-11-10 |
資料番号 | KBSE2018-35,SC2018-30 |
巻番号(vol) | vol.118 |
号番号(no) | KBSE-292,SC-293 |
ページ範囲 | pp.43-46(KBSE), pp.43-46(SC), |
ページ数 | 4 |
発行日 | 2018-11-02 (KBSE, SC) |