講演名 | 2022-02-21 Liver Tumor Segmentation by Using a Massive-Training Artificial Neural Network (MTANN) and its Analysis in Liver CT. Yuqiao Yang(Tokyo Tech), Muneyuki Sato(Tokyo Tech), Ze Jin(Tokyo Tech), Kenji Suzuki(Tokyo Tech), |
---|---|
PDFダウンロードページ | ![]() |
抄録(和) | Based on a 3D massive-training artificial neural network (MTANN) combined with a Hessian-based ellipse enhancer, a small-sample-size deep learning technique for semantic segmentation of liver tumors in contrast-enhanced CT is proposed. To show the proposed model's efficiency in a small-sample size dataset, we trained the proposed models with only 7 tumors from 7 patients, and 14 tumors from 12 patients. The proposed model achieved a Dice score of 0.703 with the training set of 12 patients. The accuracy was comparable to the CNN-based method with 131 patients in the MICCAI 2017 competition. The proposed model is essential in deep learning applications in medical imaging where a large database is not available. |
抄録(英) | Based on a 3D massive-training artificial neural network (MTANN) combined with a Hessian-based ellipse enhancer, a small-sample-size deep learning technique for semantic segmentation of liver tumors in contrast-enhanced CT is proposed. To show the proposed model's efficiency in a small-sample size dataset, we trained the proposed models with only 7 tumors from 7 patients, and 14 tumors from 12 patients. The proposed model achieved a Dice score of 0.703 with the training set of 12 patients. The accuracy was comparable to the CNN-based method with 131 patients in the MICCAI 2017 competition. The proposed model is essential in deep learning applications in medical imaging where a large database is not available. |
キーワード(和) | deep learning / small-sample-size / medical image / semantic segmentation |
キーワード(英) | deep learning / small-sample-size / medical image / semantic segmentation |
資料番号 | ITS2021-33,IE2021-42 |
発行日 | 2022-02-14 (ITS, IE) |
研究会情報 | |
研究会 | IE / ITS / ITE-AIT / ITE-ME / ITE-MMS |
---|---|
開催期間 | 2022/2/21(から2日開催) |
開催地(和) | オンライン開催 |
開催地(英) | Online |
テーマ(和) | 画像処理,一般 |
テーマ(英) | Image Processing, etc. |
委員長氏名(和) | 児玉 和也(NII) / 藤井 雅弘(宇都宮大) / 名手 久貴(東京工芸大) / 新井 啓之(日本工大) / 町田 賢司(NHK) |
委員長氏名(英) | Kazuya Kodama(NII) / Masahiro Fujii(Utsunomiya Univ.) / Hisaki Nate(Tokyo Polytechnic Univ.) / Hiroyuki Arai(Nippon Inst. of Tech.) / Kenji Machida(NHK) |
副委員長氏名(和) | 坂東 幸浩(NTT) / 山崎 俊彦(東大) / 大野 光平(明治大) / 橋本 尚久(産総研) / / 村松 正吾(新潟大) |
副委員長氏名(英) | Hiroyuki Bandoh(NTT) / Toshihiko Yamazaki(Univ. of Tokyo) / Kohei Ohno(Meiji Univ.) / Naohisa Hashimoto(AIST) / / Shogo Muramatsu(Niigata Univ.) |
幹事氏名(和) | 海野 恭平(KDDI総合研究所) / 福嶋 慶繁(名工大) / 橋浦 康一郎(秋田県立大) / 金 帝演(鶴岡工専) / / 望月 貴裕(NHK) / 小川 貴弘(北海道大) / 細井 利憲(NEC) / 山野 文子(コニカミノルタ) / 堀 淳志(三菱電機) / 文仙 正俊(福岡大) |
幹事氏名(英) | Kyohei Unno(KDDI Research) / Norishige Fukushima(Nagoya Inst. of Tech.) / Kouichiro Hashiura(Akita Prefectural Univ.) / Kim Jeyeon(NIT, Tsuruoka College) / / Takahiro Mochizuki(NHK) / Takahiro Ogawa(Hokkaido Univ.) / Toshinori Hosoi(NEC) / Ayako Yamano(KONICA MINOLTA) / Atsushi Hori(Mitsubishi Electric) / Masatoshi Bunsen(Fukuoka Univ.) |
幹事補佐氏名(和) | 岩村 俊輔(NHK) / 工藤 忍(NTT) / 今尾 勝崇(三菱電機) / 佐保 賢志(富山県立大) / 自見 圭司(群馬大) |
幹事補佐氏名(英) | Shunsuke Iwamura(NHK) / Shinobu Kudo(NTT) / Msataka Imao(Mitsubishi Electric) / Kenshi Saho(Toyama Prefectural Univ.) / Keiji Jimi(Gunma Univ.) |
講演論文情報詳細 | |
申込み研究会 | Technical Committee on Image Engineering / Technical Committee on Intelligent Transport Systems Technology / Technical Group on Artistic Image Technology / Technical Group on Media Engineering / Technical Group on Multi-media Storage |
---|---|
本文の言語 | ENG |
タイトル(和) | |
サブタイトル(和) | |
タイトル(英) | Liver Tumor Segmentation by Using a Massive-Training Artificial Neural Network (MTANN) and its Analysis in Liver CT. |
サブタイトル(和) | |
キーワード(1)(和/英) | deep learning / deep learning |
キーワード(2)(和/英) | small-sample-size / small-sample-size |
キーワード(3)(和/英) | medical image / medical image |
キーワード(4)(和/英) | semantic segmentation / semantic segmentation |
第 1 著者 氏名(和/英) | Yuqiao Yang / Yuqiao Yang |
第 1 著者 所属(和/英) | Tokyo Institute of Technology(略称:Tokyo Tech) Tokyo Institute of Technology(略称:Tokyo Tech) |
第 2 著者 氏名(和/英) | Muneyuki Sato / Muneyuki Sato |
第 2 著者 所属(和/英) | Tokyo Institute of Technology(略称:Tokyo Tech) Tokyo Institute of Technology(略称:Tokyo Tech) |
第 3 著者 氏名(和/英) | Ze Jin / Ze Jin |
第 3 著者 所属(和/英) | Tokyo Institute of Technology(略称:Tokyo Tech) Tokyo Institute of Technology(略称:Tokyo Tech) |
第 4 著者 氏名(和/英) | Kenji Suzuki / Kenji Suzuki |
第 4 著者 所属(和/英) | Tokyo Institute of Technology(略称:Tokyo Tech) Tokyo Institute of Technology(略称:Tokyo Tech) |
発表年月日 | 2022-02-21 |
資料番号 | ITS2021-33,IE2021-42 |
巻番号(vol) | vol.121 |
号番号(no) | ITS-373,IE-374 |
ページ範囲 | pp.49-54(ITS), pp.49-54(IE), |
ページ数 | 6 |
発行日 | 2022-02-14 (ITS, IE) |