災害時に備えた有線・無線ネットワーク協調復旧システム Network Cooperative Recovery (NECO-R) System with Wired and Wireless Network for Unexpected Disaster

中山 悠[†] 丸田 一輝[‡] 瀬崎 薫[†] Yu Nakayama Kazuki Maruta Kaoru Sezaki

1. はじめに

発生の予測不可能な自然災害では、人命救助活動、安否 確認、被害状況や避難に関する情報など、危急を要する大 量のトラヒックが発生する。それに対し、通信インフラの 損傷による通信経路の寸断や、トラヒックの集中による輻 輳の発生により、一般のネットワークユーザは、必ずしも 正常な通信路を確保できなくなる。特に人命に関わる情報 の伝達は一刻の時間も争うため、広いカバレッジで比較的 広帯域の通信経路を復旧することが非常に重要である。

特に、アクセス系のネットワークで多く採用されている ダブルスターネットワークトポロジ[1]-[3]は、効率性に優 れる一方で、故障箇所配下のネットワークは全て通信断と なる課題がある(図1).例えばファイバ断などの故障で は、通信断は限定的なユーザ範囲に留まる一方、激甚災害 による局舎停電などの場合には局舎配下のすべての設備で 通信断が生じ、その影響は広範囲に及ぶ、災害時の復旧を 想定した場合、いずれの故障のケースにおいても、より多 くのユーザに対して迅速に通信経路を復旧し、通信の可用 性を担保することが重要である.

災害時の通信路確保の手法として、(1)通信設備の冗長化 [4], [5]や, (2)無線による冗長経路確保[6], [7]等の報告があ る.(1)通信設備冗長化では、有線ネットワークに関して局 舎装置や有線通信経路(通信線路)などといった物理媒体 を冗長化し、いずれかの設備が故障した際には冗長系へ切 り替えることにより、通信継続が可能である.この方法で は比較的大きな回線容量を確保可能であるものの、設備を 多重化するコストが必要である.この際,一般的には,冗 長化する範囲が広いほどコストが増加する傾向がある.ま た、寸断箇所配下で冗長化がなされていない区間では、そ の設備全てにサービス断が波及するデメリットもある.他 方,(2)無線による冗長経路確保では,設備多重化に係る追 加コストは発生しない. さらに, 無線設備が太陽光パネル 等により駆動する構成[8]をとれば、災害に伴う電源断にも 対応可能である.しかしながら、専用の無線アクセスポイ ント (AP: Access Point) を密に設置して局舎の上位ネット ワークに接続する必要があるため高コストになること、ま たマルチホップの場合にホップ数に反比例して通信帯域が 狭くなり、ユーザごとの通信帯域の保証が難しい、という デメリットがある.

そこで本稿では、上記の有線と無線の長所を組み合わせ たネットワーク協調復旧(NECO-R: Network Cooperative Recovery) 方式による災害時通信経路確立システムを提案

* 東京大学 生産技術研究所 : Institute of Industrial Science, the University of Tokyo

‡九州大学 大学院 システム情報科学府 : Graduate School of Information Science and Electrical Engineering, Kyushu University

図1 ダブルスターネットワーク

する.本方式では、広範囲に配置されたリーフノードに対 し、災害時の通信経路復旧用の無線通信機能を付加する. そして、リーフノードが接続された通信線路が寸断された 場合には、通信線路を用いた通信が確保されている近傍の リーフノードに対して無線接続を行い、迂回経路を確立す ることで、迅速な通信復旧を実現する.この方法では、通 信線路の冗長化や専用無線 AP の設置が必要ないため低コ スト化が期待される.さらに、無線による接続距離も近傍 のリーフノード間距離に収まることから、比較的広帯域の 通信経路を確保することが可能である.

本稿では特に、NECO-R システムにおける通信復旧の概 要および各端末の動作シーケンスを明確化し、迂回経路に おいて期待される無線接続スループット値を最大化する方 法を 0-1 整数計画問題として定式化する. さらに、迂回経 路における平均スループット値をシミュレーションにより 評価し、既報告のシステムと比較した結果を用いて、 NECO-R システムが災害時の通信経路復旧において有用で あることを示す.

2. Related works

本節では,前節で述べた災害時の通信路確保方式として,(1)通信設備冗長化,(2)無線冗長システム,(3)NECO-R を 比較し,各方式の特徴を明確化する(図2,表1).

(1)通信設備冗長化においては,過去に PON (Passive Optical Network)を用いたアクセスネットワークにおいて, 光加入者ユニット(OSU: Optical Subscriber Unit)の冗長化に よるカード故障に対する信頼性向上システムの報告がなさ れている[4]. 復旧対象設備が通信線路を基調とした通信シ ステムであるため伝送容量が大きく(数百 Mbps~数 Gbps), 輻輳に対する耐性を確保可能である利点がある.

(1) 通信設備冗長化

(2) 無線冗長システム

図2 既存方式

表1 各種の通信復旧方式の比較

方式	(1)通信設備冗長	(2)無線冗長	(3)NECO-R
比較項目			
経済性	\bigtriangleup	×	0
耐輻輳性	0	×	本検討範囲
カバレッジ	×	0	本検討範囲

ただし,設備を二重化するため冗長範囲を拡大するほどコ ストが増大しやすい上に,局舎損壊などにおいて装置筐体 の全てがダウンする等の場合には対応が難しい.また,通 信復旧カバレッジは装置レベルであり,より広範囲での復 旧は不可能である.

(2)無線冗長システム[6]では、マルチホップを利用した 冗長経路形成による高信頼化の報告がなされている.ただ し、APを密に配置する必要性があることから高コストと なることが課題である.また APのマルチホップを前提と しているためにホップ数が増えるほど通信帯域が絞られ、 耐輻輳性は低いと考えられる.

これに対し, PON における故障時の無線復旧システムが 提案されている[9].本方式は,有線と無線の協調復旧シス テムである点で NECO-R と同様である.[9]では, ONU

(Optical Network Unit)に対して無線通信端末を接続し, OpenFlow[10]を用いて経路制御を行う手法が提案されてい る. すなわち, ONU が通信断となった際には,無線通信 端末同士で迂回通信経路を確立し,他の ONU を経由して OLT との通信を復旧する.よって,無線冗長システムを用 いて他の線路を利用するという点では(1),(2)のハイブリ ッド方式であると考えられる.ただし,本方法では,迂回 通信経路の選択アルゴリズムとして,選択するノードの重 複を可能な限り避ける手法を用いているため,ノード間距 離によるスループットの違いを考慮していない.実際には, 後述するように無線通信距離に応じてスループットが変わ るため、迂回通信経路を確立する際には、より近傍の無線 通信端末に接続した方が、より高いスループットを期待す ることができる.災害時により多くのトラヒックを転送す るためには、全体のスループットを最大化し、より広帯域 の通信環境を確保することが重要である.

本稿で提案する NECO-R は, PON を用いた光アクセス 網に限らず,より一般的なダブルスターネットワークに対 して適用可能な点で,[9]で提案された手法に対して優位で ある.同時に,全体の無線接続スループット値を最大化す ることが可能な点で優れている.次章以降に,NECO-R 方 式の通信復旧手法,復旧効果,実フィールドに適用する際 の課題を議論する.

3. 提案手法

3.1 通信復旧手法

3.1.1 ネットワーク構成

本稿で提案する通信復旧手法について述べる.

まず,対象とするダブルスターネットワークの構成を図 3 に示す.複数のルートノードが存在し,各ルートノード から枝を伸ばし,節点(スプリッタなど)を介して複数の リーフノードが接続される.各リーフノードは,ルートノ ードを介してコントローラと接続される.通常時は全ノー ドが接続可能(alive)状態であるが,一部のノードが通信 不可(dead)状態となった際には,リーフノード間の無線 接続により迂回経路を確立し,通信の復旧を行う.

NECO-R におけるリーフノードとしては, PON の ONU 等の有線系ノードを用いる場合や, LTE の eNB (eNodeB) や C-RAN (Cloud Radio Access Network) における RRH (Remote Radio Head) 等の無線系ノードを用いる場合が想 定される.

3.1.2 通信復旧シーケンス

次に、通信復旧シーケンスの詳細を図4に示す.コント ローラは、各リーフノードの通信状態を監視し、通信不可 となった際には速やかに検知する.dead 状態の検知方法は、 キープアライブメッセージを用いる方法、SNMP (Simple Network Management Protocol)の TRAP を用いる方法、等 が考えられる.通信断を検知したコントローラは、リーフ ノード間の最適な無線通信経路を算出する.この時、通信 断を検知した、すなわち dead 状態となったリーフノード は、ノード間で用いる無線通信機能を起動する.コントロ ーラは、算出された経路を各リーフノードに設定し、無線 通信の開始を指示する.すなわち、迂回先となる alive 状 態のリーフノードに対して、指定した dead 状態のリーフ ノードに対する無線通信要求を指示する.以上の手順によ り、dead 状態のリーフノードは alive 状態のリーフノード を経由してルートノードとの通信を再開する.

3.2 通信経路決定

3.2.1 ノード間距離とスループット

最適な迂回通信経路の決定手法について述べる. 無線接 続時におけるスループットは 受信強度に依存する. したが って,接続性及びユーザ収容の観点から,迂回通信におけ

図4 復旧シーケンス

表 2	無線パラメタ

パラメタ	値	
キャリア周波数	5.2 GHz	
帯域幅	40 MHz	
送信電力	23 dBm	
アンテナ数	1	
伝搬モデル	TGn Channel model D [12]	

表3 受信電力とスループット[11]

受信電力 [dBm]	スループット [Mbps]
-79	15
-76	30
-74	45
-71	60
-67	90
-63	120
-62	135
-61	150
-56	180
-54	200

るスループット値を最大化するよう接続ノードを決定する 必要がある.無線システムの諸元として、本稿では、 5.2GHz帯の無線LAN[11]インターフェースを採用すること を想定する.パラメタを表2に示す.周波数帯域幅40MHz, 送信電力23dBm,送信受信ともに1アンテナとする.これ らパラメタにおいて、受信レベルに対応して得られるスル ープット値を表3に示す.本評価では簡単のため建物や遮 蔽物等によるシャドウイングの影響はないものと仮定し、 ノード間の通信距離から受信電力を算出する.伝搬環境は IEEE802.11 TGn Channel model D [12]に従うものとした.経 路設定においては受信レベルに基づく達成可能なスループ ット値を指標とするため、シャドウイングが存在する場合 においても本手法は適用可能である.具体的な経路決定手 法については以下に述べる.

3.2.2 経路最適化

提案手法では, 0-1 整数計画法により, ノード間の最適 な迂回通信経路を求める.

まず、パラメタについて述べる. ノード*j*の状態を表す 二値パラメタを y_j とする. $y_j = 1$ のとき、当該ノードは alive であり、 $y_j = 0$ のとき、当該ノードは dead である. ノ ード*i*,*j*間の無線接続時のスループット値を d_{ij} とする. 前 節で述べた通り、この値は図 5 より定まる. ただし、 $d_{ii} = 1$ (*i* = *j*)とおく. ノードは複数のノードとの無線接続 を許容可能とし、ノードjに接続が可能な最大ノード数を A_j とする. このとき、ノード *j*におけるスループットは接 続する無線ノード数で分割されることになる.

次に、ノード*i*,*j*間の無線接続状態を表す二値変数を x_{ij} と する. $x_{ij} = 1$ のとき、ノード*i*はノード*j*に対して無線接続 されており、 $x_{ij} = 0$ のとき、非接続であるとする. $y_j = 1$ のノードについては $x_{jj} = 1$ であると定義すると、 $y_i = x_{ii}$ を 満たす(式(2)).ノード*i*は、 $y_j = 1$ かつ $d_{ij} = 1$ である ノード*j*に対して無線接続が可能、すなわち $x_{jj} = 1$ を取り 得る(式(3)).またノード*i*は、最大で1つの接続先に 対して無線接続が可能である(式(4)).ただし広範囲 の災害等により、接続可能なノードが存在しない場合も想 定される.さらに、ノード*j*に対して同時に無線接続する ノード数は、最大値 A_i を超えない(式(5)).

このとき、ノードi,j間の無線接続スループット値は $x_{ij}d_{ij}$ となり、この和を目的関数値とする(式(1)).以 上から、提案する迂回経路決定手法は、上記制約条件の下 で目的関数値を最大化する 0-1 整数計画法である.目的関 数および制約条件式は以下の通りである.

$$\max \sum_{i} \sum_{j} x_{ij} d_{ij}$$
(1)
s.t.

$$y_j = x_{jj} \ \forall j \tag{2}$$
$$y_i d_{ij} - x_{ij} \ge 0 \ \forall i, j \tag{3}$$

$$\sum_{i=1}^{j} x_{ij} \le 1 \quad \forall i \tag{4}$$

$$\sum_{j=1}^{j} x_{ij} \leq A_i + 1 \,\forall j \tag{5}$$

$$\sum_{i} h_{ij} = h_{j} + h_{ij}$$
(3)

$$x_{ij} = 0, 1$$
 (6)

4. ケーススタディ

提案手法について,広範囲にわたる通信断を想定したシ ミュレーションにより,その有効性を評価した.

4.1 評価方法

4.1.1 評価フロー

まず,評価の流れについて述べる.評価対象エリアを一 定範囲の正方形とし,対象エリア内にダブルスターNWを 生成する.すなわち一定数のルートノードをランダムに配 置し,各ルートノードから枝を生成する.このとき,枝数 の平均値と最大枝長を定め,枝の角度および長さはランダ ムな値とする.さらに,生成された枝の先端から2段目の 枝を生成し,その先端にリーフノードを生成する.2段目 の枝についても,その角度と長さはランダムな値とし,平 均分岐数および最大枝長は別に定める.

以上の方法で生成されたダブルスターNW について,指 定したルートノードに属するリーフノードを全て dead 状態とすることで,災害時の通信断をシミュレートする.

この条件下で,提案した 0-1 整数計画法を用いて迂回通 信経路を算出し,各無線リンクのスループット平均値,す なわち提案手法における目的関数値から alive 状態のノー ドの値を減じて dead 状態のノード数で除した値を算出す る.なお本評価では,各無線リンクには異なるチャネルが 割り当てられるものと想定し,リンク間における同一チャ ネル干渉は起こらないものとする.

算出されたスループット合計値を、従来手法[9]により求 めた迂回通信経路における無線リンクのスループット平均 値と比較し、提案手法の有効性を確認する.なお従来手法 [9]は、迂回先ノードの重複を避けることでノードの無線リ ソース占有率を確保し、スループット低下を回避すること を目的とした手法である.

以上のフローを 1000 回繰り返し,ノード配置によらず 提案手法が有効であることを確認する.

4.1.2 パラメタ

ケーススタディにおいて用いた各パラメタの値を表 4 に 示す.4つのルートノードの内の1つが dead 状態となる条 件を模擬した.検証の単純化のため,同時接続ノード数*A*_j は全て同数とした.

4.2 評価結果

シミュレーション結果について述べる.まず,生成され たダブルスターNWの一例を図6,7に示す.この場合, 対象エリア内に存在する4つのルートノードに対して,そ れぞれ平均8つのリーフノードが接続されている.エリア 中央付近に存在するルートノードおよび,当該ノードに接 続されたリーフノードが dead 状態となり,これらのノー ドについて迂回経路計算を行った.

シミュレーションを 1000 回行った際の各無線リンクの スループット平均値の分布を図 8 に示す. 従来方式ではス ループットは低い値に分布することがわかる. これと比較 して,提案手法は初期条件によらずスループット値を常に 改善可能であることがわかる.

この結果について,図 6,7のシミュレーション条件例 から,提案手法および従来手法により算出された最適な迂

表4 シミュレーションパラメタ

パラメタ	値
対象エリア辺	500 m
ルートノード数	4
平均枝数	2
最大枝長(1段目)	100 m
枝あたり平均分岐数	4
最大枝長(2段目)	50 m
通信断ルートノード数	1
最大接続数(A _i ∀j)	4

図6 シミュレーション条件例1

図7 シミュレーション条件例2

図8 各無線リンクのスループット平均値

図9 シミュレーション条件例における最適な迂回経路

回経路を示す図 9 を用いて考察する. dead 状態のリーフノ ードから設定された迂回経路(太実線)について見ると, 条件 1,2 のいずれにおいても,提案手法ではより近傍のノ ード同士の間で経路が設定されている. それに対して従来 手法では,提案手法と比較して遠距離にあるノード間で迂 回経路が設定されている. これは,迂回先ノードの重複を 避けることを目的として経路最適化が行われることに起因 している. 結果として接続距離が 100m に近い経路が多く 設定され,スループット低下の原因となっている.

以上から,提案手法により高い無線リンクのスループットが得られることが明確となった.

4.3 考察

上記シミュレーション結果から、NECO-R システムによ り広範囲に配置された多数のリーフノードに対して通信復 旧が可能であること、および初期条件によらず、従来方式 よりも高いスループットを得られることを確認した.

本稿では、Dead 状態のノードが接続する無線接続先を 1 つと仮定したが、複数ノードに対して無線接続を行う方式 も考えられる.この場合、パケットが複数の経路を通り、 異なるルートノードに到達する可能性も生じる. 本稿では他にも,無線接続時の最大ホップ数を1つとする 仮定を用いた.マルチホップ接続を許容することで,より 広範囲にわたるリーフノードの通信を復旧可能となる確率 が高まる.その一方で,ホップ数が増加するほどスループ ットが低下し,経路計算も複雑化する.本稿では単純化の ために接続先およびホップ数を制限したが,特にノード分 布が疎である地域を復旧対象とする場合には,マルチホッ プによる通信復旧エリアのカバレッジを拡大する必要だと 考えられる.

また、本システムには現時点で以下3つの課題がある. まず、無線接続帯域は接続ノード間で分割されるため、実際に得られるスループットは、提案手法により算出される スループット値より小さくなる.そのため、同時接続ノー ド数も考慮して、より高いスループットを得られる経路を 設定することが必要である.また、実際に利用可能なチャ ネル数には限りがあることから、複数の無線リンクに同じ チャネルを割り当てなければならない制約が生じる.リン ク間の同ーチャネル干渉を最小化するためのチャネル割り 当ても考慮した経路決定手法や、その上で上記干渉を考慮 したスループット評価も必要である.さらに、AP に複数 のアンテナを備え、MIMO (Multiple-Input Multiple-Output) の適用による高スループット化も検討課題である.今後は、 トラヒックシミュレーションにより実際にスループットを 計測しながら、より適した復旧手法を確立することが重要 である.

以上に明確化した課題を克服することによって,災害時 における冗長通信経路を効果的に確立可能なシステムを構 築可能となる.

5. まとめ

本稿では、災害時の影響範囲が大きいダブルスターNW に ついて、効率的な通信復旧を行うための NECO-R システム を提案した. さらに、無線 AP 間のノード間距離とスルー プットの関係を用いて総通信帯域を最大化する迂回経路設 定手法を 0-1 整数計画法として定式化した. さらに、提案 手法によるスループット向上効果をシミュレーションによ り確認した.

謝辞

本研究を進めるにあたり,非常に有効なアイデアや助言を 下さった,日本電信電話株式会社 堤卓也氏に深く感謝いた します.

参考文献

- S. Izumi et al., "Cost and quantity analysis of passive double-star optical-access-network facilities for broadband service multiplexing," J. Lightw. Technol., vol. 24, no. 10, pp. 3625-3634, 2006.
- [2] J. Kani et al., "Next-generation PON Part I : technology roadmap and general requirements," IEEE Communication magazines, vol. 47, pp.43-49, 2009.
- [3] IEEE Std 802.3-2012, "10Gb/s Ethernet Passive Optical Network," 2012
- [4] T. Mitsui et al., "Flexible and scalable PON protection architecture using N:1 redundancy toward next generation access network," APCC (2011), pp.224-229.
- [5] H. Ozaki et al., "User-Perceived Reliability of M-for-N (M:N) Shared Protection Systems," IEICE Trans. Inf. & Syst., vol. E92-D, no. 3, 2009.
- [6] Y. N. Lien et al.,, "A Multi-hop Walkie-Talkie-Like Emergency Communication System for Catastrophic Natural Disasters," Proc. of International Conference on Parallel Processing Workshops (2010), pp. 527-532.
- [7] A. Scaglione et al. "Opportunistic Large Arrays: Cooperative Transmission in Wireless Multihop Ad Hoc Networks to Reach Far Distances," IEEE Trans. Signal Processing, vol. 51, no. 8, pp. 2082-2092, 2003.
- [8] T. D. Todd, A. A. Sayegh, M. N. Smadi, Z. Dongmei, "The need for access point power saving in solar powered WLAN mesh networks," IEEE Network, vol.22, no.3, pp.4-10, May-June 2008.
- [9] Y. Nakayama et al., "Fault Recovery in PON with Wireless Communication between User Terminals," Proc. of OECC (2014), pp. 137-139.
- [10] S. J. Vaughan-Nichols, "OpenFlow: The Next Generation of the Network?," IEEE Computer, vol.44, no.8, pp.13-15, Aug. 2011.
- [11] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Dec. 2013.
- [12] TGn Channel Models, IEEE Std. 802.11-03/940r4, May, 2004.