プロジェクタの幾何補正システムの開発

Development of Geometric Correction System for Projector

今井 倫太郎†	加藤 嗣†	田口 亮†	保黒 政大‡	梅崎 太造†
Rintaro Imai	Tsukasa Kato	Ryo Taguchi	Masahiro Hoguro	Taizo Umezaki

1. はじめに

近年の大画面かつ高精細なディスプレイへのニーズの高 まりを背景に、小型化や低価格化の進んだプロジェクタを 用いてオフィスや居間のカーテンや壁に画像を投影する技 術が注目されている.しかし専用スクリーンではない投影 面に対するプロジェクタの表示は次の二つの問題が起きる. 一つ目は、投影面の表面形状や位置関係に起因して投影画 像が歪んで見える幾何学的問題である.次に投影面が一様 な反射特性を有していないために、明るさや色合いが異な ように見える光学的問題である.これらの解決法としてプ ロジェクタ-カメラシステムを用いて幾何的問題を解決す る補正[1][2]や光学的問題を解決する補正[3][4]を実現する 手法が多く提案されている.このシステムでは、カメラを 視聴者とみなし、カメラで観察された画像(観察画像)を 基にプロジェクタに入力する画像(入力画像)を変換する. 例えば、[1]の手法ではスリット状のパターンをプロジェク タから投影してカメラで撮影する方法で幾何的に補正して

Fig.1 実験装置外観

Fig.3 観察されたパターンの例

- 右古屋工業大学大学院工学研究科 情報工学専攻, Department of Computer Science and Engineering, Nagoya Institute of Technology, imai@ume.mta.nitech.ac.jp
- 中部大学 工学部 電子情報工学科, Department of Electronics and Information Engineering, Chubu University

いる.幾何的補正は光学的補正に先んじて行われるため, システム全体の補正精度を保つ上で非常に重要である.し かしながら反射特性が一様でない,例えば模様や柄のある ような投影面を用いた際の幾何的補正への影響は論文中で は評価されていない.本稿では,グレイコードパターン[5] のみを用いた投影パターン数が少なく,演算が簡便な幾何 的補正手法を提案し,模様のある投影面に対する幾何的補 正の誤差がスリットパターンを用いる従来手法と比較して 軽減されることを示す.

2. 実験装置

本研究で用いるプロジェクタ-カメラシステムは、補正 パターンおよび補正後の画像を投影するプロジェクタ1台, 投影画像を観察するカメラ1台,画像処理演算用のコンピ ュータ,および投影面で構成される.装置の外観をFig.1 に示す.装置が使用される環境の条件として、室内である こと、各構成品は静止していること、および投影面の表面 形状はなめらかな曲面を呈していることを仮定する.今回 の実験では IMAGING SOURCE 社の USB カラーCMOS カ メラ DFK 61CU02.H (使用解像度2560×1536[pixel])と EPSON 社の液晶プロジェクタ EB-1770W (使用解像度 1280×720[pixel])を用いた.また、プロジェクタ解像度 のうち補正に使用する範囲は640×384[pixel]である.

3. 幾何補正手法

3.1 グレイコードパターンと重心

カメラを視聴者とみなし、歪みのない画像が観察できる ようにするためには、観察画像と入力画像間に座標の対応 付けを行う必要がある.そこで提案手法では,効率性とコ ード化誤りの低減が期待できる相補的なグレイコードパタ ーンを用いる[5]. グレイコードパターンの例を Fig. 2 に示 す.水平方向と垂直方向それぞれのパターンをプロジェク タから1回ずつスクリーンに投影し、スクリーン上でのパ ターンの変化をカメラで撮影する(Fig. 3).得られた画 像からコードを復号することで、観察画像および入力画像 上に 2 次元コードを割り付けることができる. ただし, 1 コードあたりのピクセル幅やビット深さは設定に応じて変 更される. そして観察画像上,入力画像上における 2 次元 コード(i,j)が割り当てられた領域の重心 $G_{i,i}$, $S_{i,i}$ をそれぞ れ式(1), (2)により求める. ここで, A(i, j)は観察画像上で 2 次元コード(i, j)が割り当てられた領域, B(i, j)は入力画像 上のそれである.これら $G_{i,j}$ と $S_{i,j}$ が同一視できると仮定す ると、二画像間で対応付けられた点群が得られる.

$$G_{i,j} = \frac{1}{|A(i,j)|} \sum_{(x,y) \in A(i,j)} (x,y)$$
(1)

$$S_{i,j} = \frac{1}{|B(i,j)|} \sum_{(x,y) \in B(i,j)} (x,y)$$
(2)

11 第3分冊

Fig.5 投影領域の決定

3.2 メッシュの対応付け

前節のグレイコードパターンで得られる対応点を用いて メッシュを生成すれば、二画像間でメッシュを透視投影変 換により対応付けできる. G = (x, y)を観察画像上の点、 S = (X, Y)を入力画像上の点とすると、これらの間の透視 投影変換は式(3)、(4)のように表せる.

$$X = \frac{h_1 x + h_2 y + h_3}{h_7 x + h_8 y + 1} \tag{3}$$

$$Y = \frac{h_4 x + h_5 y + h_6}{h_7 x + h_8 y + 1} \tag{4}$$

$$\binom{X}{Y} = \binom{x \ y \ 1 \ 0 \ 0 \ 0 \ -xX \ -yX}{0 \ 0 \ 0 \ X \ Y \ 1 \ -xY \ -yY} \binom{h_1}{\vdots}_{h_8}$$
(5)

$$\boldsymbol{H}_{i,j} = \begin{pmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \\ h_7 & h_2 & 1 \end{pmatrix}$$
(6)

ここで $h_1, ..., h_8$ は透視投影変換パラメタである.また 2 点G, Sの対応関係から式(5)の拘束が得られる.この式の 自由度は 6 であることから,最低 4 組の 2 点間対応があれ ば透視投影変換パラメタを決定できる.そこで Fig. 4 のよ うに隣接する 4 個の二次元コードの重心を頂点に持つよう な四角形 $G_{i,j}G_{i,j+1}G_{i+1,j+1}G_{i+1,j}$ を四角形 $S_{i,j}S_{i,j+1}S_{i+1,j+1}S_{i+1,j}$ に写す透視投影変換 $H_{i,j}$ を求めること ができる.こうしてメッシュごとに得られる局所的な座標

(a) 水平方向
 (b) 垂直方向
 Fig. 6 スリットパターン

Fig.7 垂直方向のスリットと輝度投影

変換を全体に結合することで、入力画像から観察画像への 補正テーブルが構成できる.このテーブルを基に原画像を 幾何的変換すれば歪みのない画像がカメラから観察できる.

3.3 投影範囲の決定

観察画像上のどの範囲に補正画像が映るようにするか決 定する必要がある.まず相補的なグレイコードパターンの 差分を取り,適切なしきい値で二値化することで投影面の マスク画像を作成する.マスク画像の重心を中心として, 原画像のアスペクト比を保つような矩形範囲のうち面積が 最大で,なおかつマスク領域に収まるような範囲を補正画 像の投影範囲とする(Fig.5).

3.4 スリットパターン投影法

従来手法であるスリットパターン投影法について説明す る. スリットパターンは水平垂直方向に一定間隔で並んだ 白線からなり、このパターンを 1[pixel]ずつシフトさせた 画像を投影・撮影し、スリットの交点を算出する.入力画 像の各点に対して観察画像の座標を対応付けることで補正 テーブルを作成する. スリットパターンの例を Fig. 6 に示 す. 投影画像内のスリットの各交点は次の方法で算出する. まずスリットのおおまかな位置を把握するため、コードあ たりの幅をスリット間隔とするグレイコードパターンを投 影・撮影し、2次元コードを割り当てる.そして隣接する コード重心の位置から各スリットの輝度投影範囲を決定す る. 垂直方向のスリットの場合,範囲上で Y 方向に投影処 理を行い輝度総和を求める.この輝度総和の最大ピークが スリットの交点の X 座標となる.ただしピークは、移動平 均した投影分布を 2 次多項式で曲線フィッティングし、そ の極大座標をサブピクセルで求める(Fig. 7).

(a3) 原画像

(b3) 補正前 (c3) 従来手法の補正結果 Fig.9 幾何的補正の結果

Fig. 8 実験に使用するカーテン

Fig. 7 で示したような水平・垂直方向の輝度投影とフィッ ティング処理を入力画像上の各点で行う必要があり、提案 手法に比べて計算量や画素アクセスの総数が増大するため である. 補正にかかる時間をさらに短縮するためには, GPU 上で並列処理させること、高速度カメラを用いること、 カメラとプロジェクタをトリガ同期させることが挙げられ る.これらについては今後の予定として検討する.

5. 評価実験と考察

5.1 模様のない投影面に対する精度評価

模様のない投影面に対して、従来手法と提案手法の相違 を評価し、二手法が同程度の補正精度を持っていることを 示す.実験では前章と同様の無地のカーテン(Fig. 8)を 投影面とし、従来手法を用いた場合の補正テーブルを真値 として仮定し、提案手法を用いて得られる補正テーブルと の誤差で評価する. この誤差は Euclid 距離で求める. すな わち評価は観察画像ではなく入力画像の座標で行われる. 例として提案手法で得られた補正テーブルを基にして、入 力画像の座標に変換した無地のカーテンの観察画像を Fig. 10 に示す. 提案手法のグレイコードパターンの1コードあ たりの幅は 32, 16, 8, 4[pixel]の各値に設定し, それぞれ について評価を行う.濃淡で表現した2次元の誤差分布を Fig. 11 に示し, 平均二乗誤差の推移を Fig. 12 に示す. Fig. 11より、コードあたりの幅が 32[pixel]のときカーテンの折

4. 幾何的補正の実験

前章で説明した提案手法と従来手法について幾何的補正 を実施した.実験にあたり、投影面には Fig. 8 に示す無地 のカーテンを使用する.提案手法のグレイコードパターン は 1 コードあたりの幅を 4[pixel]とし、相補パターンを合 わせて 36 枚を使用した.一方,従来手法のスリットパタ ーンは水平垂直方向に 3[pixel]幅の白線が 16[pixel]の間隔 で並んだパターンを使用した.加えて交点を安定して取得 するためのコード幅が 16[pixel]のグレイコードパターンを 用いた. したがい、投影・撮影するパターンは合わせて 60 枚である. 実験の例を Fig. 9 に示す. 幾何的補正を行わな い場合、カーテンの折り曲がりに伴う画像の変形やデバイ スの位置関係による傾きが発生しているが、従来手法と提 案手法の補正結果では歪みは解消されており、いずれの手 法も有効であることがわかる.また,2手法による補正結 果から目立つ差異は確認できず、同程度の補正が行われて いると推測される.次章で評価実験を行い2手法の相違を 確認する.

次に、補正にかかる処理時間について説明する.本実験 では、パターンをプロジェクタから投影しカメラで撮影す るまでの時間を 350[ms]に設定し、演算用のコンピュータ は CPU に Core i7 3.40GHz を使用した. 従来手法では 60 枚 のパターン投影・撮影に 21.2[sec]を, スリットの交点を求 め補正テーブルを算出するまでに 35.1[sec]を要した. した がい,全ての処理時間は 56.3[sec]である.一方,提案手法 では、36枚のパターン投影・撮影に 12.5[sec]を、メッシュ の生成から補正テーブルの算出までに 520[ms]を要した. したがい全ての処理時間は 13.1[sec]と、従来手法と比較し て大幅に処理時間を短縮することができた。ただしグレイ コードの復号処理は投影・撮影中にバックグラウンド実行 されている.提案手法で処理時間が短縮された理由は,投 影するパターン枚数が少ないことに加えて、従来手法では

れ曲がりの周辺で誤差が大きく,コードの幅が小さくなる に従い誤差が解消されていることがわかる.これはコード の幅が大きいとメッシュが粗くなり,投影面の急な形状変 化に対応できないためと考えられる.また,平均二乗誤差 を表した Fig. 12 より,コードあたりの幅が 16[pixel]以降か ら急峻に誤差が減少し,最も改善した 4[pixel]の場合は誤 差が 0.45[pixel]であることを確認した.以上より模様のな い投影面の場合,従来手法と提案手法は同程度の補正精度 であると言える.

5.2 模様のある投影面に対する補正精度への影響

投影面の模様が及ぼす幾何的補正への影響を評価する. 評価実験にあたり,投影面にはカラーの矩形が描画された 平板を使用する(Fig. 13).矩形の色は上列左から赤色,青 色,黄色,緑色,下列左から薄い灰色,紫色,桜色,濃い 灰色である.この実験では平板の模様に無関係な補正テー ブルを得るために,Fig.13の観察画像から投影面の4点の コーナーを検出し入力画像から観察画像への透視投影変換 を求める.このテーブルを基に入力画像の座標に変換した 平板の観察画像をFig.14に示す.そしてこの変換から求ま る補正テーブルを真値として仮定し,従来手法および提案 手法を用いて得られる補正テーブルとの誤差で評価する. この誤差は Euclid 距離で求める.本実験で使用するパター

Fig. 12 コードあたりの幅と補正誤差

ンは4章の補正実験と同じものとする. Fig. 15では、従来 手法および提案手法について,濃淡で表した2次元の誤差 分布および X=380, 520 における誤差分布のグラフを示し ている. X=520 において従来手法では模様の境界付近で誤 差が最大 3.48[pixel]となる一方,提案手法では最大 1.45[pixel]となり誤差が 42%に減少し, 提案手法が投影面 の模様に対して強健であると言える.しかし提案手法の2 次元誤差分布からわかるようにモアレ状の周期的な誤差が 発生している. X=360 における誤差分布から従来手法では 誤差がゆるやかに変化するのに対し、提案手法では高周波 の振動を伴い変化していることがわかる. これは 2 次元コ ードの重心で生成されるメッシュの近似により、もともと 存在するカメラ分解能とプロジェクタ分解能の空間周波数 の違いから発生するうなり現象が顕著に現れたものと考え られる. Table 1 は二手法に関する補正テーブル全体での平 均二乗誤差を表している. これより提案手法でやや誤差の 改善が見られるため、うなり現象が全体に与える影響は少 ないものと推測される.この現象に関する補正精度への局 所的な影響の分析と改善は今後の課題である.

従来手法を用いた際に模様の境界付近で大きな誤差が発 生する理由として、スリットが模様境界と交叉した場合、 スリットの投影輝度分布が歪になり極大ピーク座標がずれ るためと考えられる.模様境界および内部におけるスリッ トの投影輝度分布の例を Fig. 16 に示す. Fig. 16 では、模

Tuble 1	及内的 m 上 v K 上 lP	IACI
	従来手法	提案手法
RMS Error	1.10	1.06

Fig. 17 実験で用いた模様付きカーテンと観察画像

様内部の(b)の分布が対称な形を呈しているのに対して, 模 様境界の(a)の分布は白の模様側にずれこんでおり非対称な 形を呈している.結果的に(a)の極大ピーク座標は X 座標が 正方向へずれることになる.一方,提案手法でこのような 模様境界での誤差が顕著でない理由は,相補的なグレイコ ードパターンにより模様の変化に対する影響が低減された ためと考えられる.

次に, Fig. 17 に示す模様付きのカーテンに対して従来手 法と提案手法の相違を評価する.本実験は 5.1 節と同様に 従来手法で得られた補正テーブルを真値として仮定し、提 案手法の対応点座標との誤差で評価する.この誤差は Euclid 距離で求める.本実験で使用するパターンは4章の 補正実験と同じものとする. 濃淡で表した誤差分布と Y=192における誤差分布のグラフを Fig. 19に示す. 誤差分 布から模様の境界で誤差が発生していることが確認できる. また, Y=192 において誤差は最大 1.30[pixel]であることを 確認した.次に、どちらの手法が模様の影響を受けている かを判断するため、それぞれの補正テーブルを微分してそ の勾配を調べる.実験で用いたカーテンは滑らかな表面形 状を呈しているため、模様の影響を受けていなければ模様 境界においても補正テーブルの勾配は滑らかに分布するは ずである. そこで, 補正テーブルの点(x,y)におけるスカ ラー量の勾配をk = (s + t)/2で定める. ただしs, tはそれ ぞれ X, Y方向の勾配ベクトルの長さ

) 従来于仏 (0) 従来子 Fig. 20 補正テーブルの勾配

$$s(x, y) = ||R(x + 1, y) - R(x, y)||$$

 $t(x, y) = \|R(x, y + 1) - R(x, y)\|$

で定義される.ここでR(x,y)は補正テーブル上の点(x,y) に対応する観察画像上の点, ||·||は線型実平面上の Euclid 距離が定めるノルムである.従来手法および提案手法の補 正テーブルの勾配を濃淡で表現した図とその拡大図を Fig. 20に示す. (a)の従来手法では模様の境界で補正テーブルの 勾配が変化していることが確認できる.一方で(b)の提案手 法では境界で勾配の変化は確認できず,勾配が滑らかに分 布していることがわかる.以上より平板に対する実験結果 と同様に,カーテンのような滑らかな投影面についても従 来手法と比較して提案手法は模様の変化に対して強健であ ると言える.

6. 輝度補正精度への影響

最後に,簡易的なグレースケールの輝度補正を行い補正 精度が提案手法で改善することを確認する.輝度補正は, 原画像と観察画像の差異から入力画像の輝度値を微調整し, 再び投影するフィードバック方式で行う.具体的には以下 の手順で補正する.まず初期値として原画像を入力画像の 座標に変換し投影・撮影する.次に入力画像の座標に変換 された原画像と観察画像の各画素について輝度値の比較を 行い,観察画像の方が明るい場合,対応する座標の入力画 像の輝度値を1下げる.反対に観察画像の方が暗い場合, 入力画像の輝度値を1上げる.こうして輝度値を微調整し た入力画像を投影し,その観察画像と原画像の比較を繰り

(a) 補正前

(b) 提案手法による補正入力画像

Fig. 21 輝度補正画像

Fig. 22 均一な輝度補正と PSNR

Table 2 均一な輝度補止と PSNR [dB]					
補正輝度値	従来手法	提案手法			
50	39.7	40.7			
100	34.5	36.2			
150	33.3	33.0			

返す. ただし入力画像の輝度値は 0 を下限とし, 255 を上 限とする.精度評価は、投影面を均一な輝度値に補正した 際の観察画像と一様輝度の画像との PSNR (ピーク信号対 雑音比)を求めることで行う. 評価実験では 5 章で用いた 平板を投影面とした.従来手法と提案手法それぞれから得 られる幾何補正テーブルを基にして輝度補正した結果を Fig. 21 に, 各均一な輝度値で補正した際の投影面全体の PSNR を Fig. 22 および Table 2 に示す. Fig. 21 (c)の従来手 法では矩形の境界で輝度が低下していることが確認できる. この理由として、5.2節で解説したように輝度投影のピー クが明るい方へずれ込み、投影された画像では矩形が見か け上小さくなる.したがい修正輝度値は負方向に発散し, 結果的に暗い部分が現れるためである.一方(d)の提案手法 では境界での輝度ズレは従来手法に対して緩和しているこ とがわかる. Fig. 22 に示す補正輝度値と PSNR の関係は, 補正輝度値が環境光の観察輝度値と一致した際に PSNR が 最大となり、以降は補正輝度値が大きくなるに連れて PSNR がゆるやかに減少、つまり補正精度が悪化していく が、輝度値 100 や 200 周辺では提案手法が優位であること がわかる.しかしながら,Table 1 で示したように幾何的補 正の誤差は提案手法に於いても 1[pixel]を超えているため, フィードバックが発散した座標がいくつか確認された. し たがい光学的補正の精度をさらに向上させるためには、幾 何・光学的補正情報を独立して扱うのではなく、互いを協 調させる手法が有効であると考えられる.

7. むすび

本稿では、グレイコードパターンを用いた高速で演算が 簡便な幾何的補正手法を提案するとともに、評価実験を通 して提案手法が投影面の模様で補正に影響を及ぼさないこ とを示した.本研究により、幾何的補正の後に行われる光 学的補正や、最終的な投影画像の補正システムの全体の精 度向上が可能になると考えられる.今後は、周期性のある 補正誤差の改善法を検討するとともに、模様が及ぼす幾何 的補正への影響をさらに分析し、それらの情報を利用した 光学的補正を検討する予定である.

参考文献

- Oliver Bimber, Andreas Emmerling, Thomas Klemmer: Embedded Entertainment with Start Projectors, IEEE Computer, vol.38, no.1: pp.48-55, 2005.
- [2] 高橋徹,三浦衛,伊藤康一,青木孝文:位相限定相関法に 基づく高精度ステレオビジョンを用いた投影画像の幾 何補正,電子情報通信学会論文誌 D, vol.J94-D, no.8: pp.1387-1397, 2011.
- [3] Michael D. Grossberg, Harish Peri, Shree K. Nayar, Peter N. Belhumeur: Making one object look line another: controlling appearance using a projector-camera system, In Proceedings of CVPR 2004: pp.452-459, 2004.
- [4] マークアシュダウン, 佐藤いまり, 岡部孝弘, 佐藤洋一: 人間の視覚特性を考慮した投影画像の光学的補正, 電子情報通信学会論文誌 D, vol.J90-D, no.8: pp.2115-2125, 2007.
- [5] 井口征士, 佐藤宏介: 三次元画像計測, 昭晃堂, 1990.