RI-002

重み関数を用いた HEVC イントラ予測改良に関する検討 A Study on Enhancement of HEVC Intra Prediction Using Weight Function

> 高村 誠之 松尾 翔平 清水 淳 Shohei Matsuo Seishi Takamura

Atsushi Shimizu

1. はじめに

近年画像の解像度やフレームレートが増大することに より,映像の有する情報量が飛躍的に増大している.映 像の放送,通信(配信),蓄積のために映像符号化技術は重 要であり、映像符号化国際規格である H.264/AVC よりも 高圧縮の規格が求められており、次世代高能率映像符号 化 HEVC(High Efficiency Video Coding)の標準化が進められ ている.本稿では、HEVC におけるイントラ予測の方法と 既存手法について述べ,その改良方法を提案する.また, 評価実験を行い、本提案法の有効性を示す.

2. HEVC イントラ予測と既存改善手法

映像符号化ではブロックに分割して予測を行い、予測 信号と原信号の差分信号に対して直交変換を施して、エ ントロピー符号化を行う.予測に関して,1つのフレーム 内で処理対象ブロック周辺の復号信号から予測を行うイ ントラ予測と、復号済みの他フレームから動きベクトル を求めて予測信号を生成するインター予測がある.本章 では HEVC のイントラ予測と既存改善手法を述べる.

2.1 HEVC のイントラ予測処理

HEVC は H.264/AVC と同様にブロック単位で符号化を 行うが、従来の 16×16 のマクロブロックではなく、符号 化ユニット(Coding Unit: CU)と呼ばれる単位で符号化を行 う. CU は予測ユニット(Prediction Unit: PU)と変換ユニッ ト(Transform Unit: TU)と呼ばれる予測及び変換ブロックに 分割されて処理される. HEVC の参照ソフトウェアである HEVC test Model (HM)では、最大の CU は LCU(Largest CU) と呼ばれ, そのサイズは 64×64 であり, 最小の CU サイ ズは 8×8となっている. PUと TU はそれぞれ CU に対し て独立に定義され, CU と同じサイズないしは四分木に分 割される. PU については 1:3 の分割形状も許容する. 従 来のマクロブロックと比べて,大きいサイズが利用でき るため、特に高解像度の画像にて圧縮効率が上がる利点 がある.

HEVC のイントラ予測に関しては,H.264/AVC の予測モ ードが 9 モードあったのに対し, 35 モードと増加してい る. 具体的なモードの違いを表1にまとめる[1,2]. 特に大 きな差分となっているのが、Angular 予測モードであり、 予測方向数が大きく増加している. その様子を図1に示す.

表1 H.264/AVC と HEVC のイントラ予測の違い

予測モード	H.264/AVC	HEVC
DC	0	〇(改良)
Angular	8 方向	33 方向
その他	Plane	Planar

図1に示される通り, HEVC では 33 方向と細かい予測 方向をとることができ,柔軟な予測信号を生成すること ができる.表1に示した予測モードは、全PUサイズ共通 で用いられる仕様となっている.図2に示すように PU サ イズが小さい場合は復号信号から予測信号までの予測距 離が短いため、予測効率は十分高い形となるが、例えば 16×16のように PU サイズが大きい場合,その予測距離が 長くなるため、予測方向先の予測信号の予測誤差エネル ギーが増大する可能性が高くなるという問題点がある.

2.2 イントラ予測符号化の既存改善手法

イントラ予測の符号化性能を向上させる方法として、(i) 予測信号の生成手段を工夫する手法[3-8], (ii)予測ブロッ クの分割形状を工夫する手法[9],(iii)予測方向の情報を利 用して予測の次に入る変換処理を工夫する手法[10]などが 存在する.

まず,(i)予測信号の生成手段を工夫する手法について述 べる.通常予測ブロックの復号参照信号は、予測対象ブ ロックの左と上に存在するので外挿予測となるが、内部 の符号化順序を変更して右及び下からの予測(内挿予測)を 可能とする手法[3]や順次隣り合う画素を参照可能にして 差分を計算して予測誤差エネルギーを低減する手法[4]が 提案されている. また, 著者らは, 復号参照信号を予測 対象ブロックの最近傍に位置する画素だけでなく、距離 が離れた近傍画素も復号参照信号として利用する手法[5] と予測方向に沿って距離に応じて傾斜を付けて予測信号 を生成する手法[6]、及びその組み合わせ手法[7]について 提案している. HEVC では Angular 予測モードの方向数が 増加したことにより,小数画素位置の復号参照信号も必 要になったことから、補間の精度を上げて予測効率を向 上させる手法[8]を提案した.

続いて、(ii)予測ブロックの分割形状を工夫する手法と しては, 例えば 8×8の PU が選択された場合, 2×8 ない しは 8×2 のような 4 分割を行って細長い矩形領域に分割 して、復号参照信号と予測対象信号の距離を短くするこ とで予測精度を向上させる方法[9]が提案されている.

図2 PUサイズと予測距離の関係

最後に(iii)後段の変換処理を工夫する手法としては、イントラ予測モードの予測方向に応じて、変換に用いる基底を変更する方法[10]が挙げられる.

以上,イントラ予測符号化の既存改善手法を述べたが, HEVC の場合より大きなブロックサイズを許容し,かつ予 測方向数が増加するという点が H.264/AVC とは異なる. 前記の点を考慮して,予測信号の生成方法には検討の余 地があると思われる.本稿では,2.1 にて記載したイント ラ予測の問題点を解決するために,柔軟に予測信号を生 成できる方法を提案する.

3. 提案イントラ予測手法

提案するイントラ予測方法を説明する.まず,本提案 手法の着眼点と概念について述べ,詳細な符号化アルゴ リズムを述べる.

3.1 着眼点

Angular 予測モードは、表1にて示した通り、予測モー ドの中で数が多い予測モードであり、Angular 予測モード の改善はイントラ予測の符号化効率向上に結び付きやす いと考えられる.また、HEVCでは前章にて述べたとおり、 詳細な予測方向を有し、かつ大きな予測ブロックサイズ が選択できる.図2に示す通り、予測ブロックサイズが大 きくなると、特に Angular 予測モードでは予測距離が非常 に長くなるため、図2を例にとると、ブロックの左下部分 における予測精度が低下することが懸念される.予測方 向の指し示す先の復号参照信号が図2では存在しているた め、予測距離の短い復号参照信号を予測に用いた方が予 測精度の改善が狙えると言える.

予測モード 10(水平予測)から 26(垂直予測)では,予測方 向の指し示す先に復号参照信号が存在しないことになる が,予測モード 2 から 9 及び 27 から 34 では,予測方向先 に復号信号が存在するため,逆方向の Angular 予測信号を 生成することができる.本提案法では,順方向の予測信 号に対して逆方向の予測信号の重み付き和を取ることで, 予測誤差エネルギーを低減して符号化効率を向上させる. 提案法の概念図を図 3 に示す.

3.2 符号化アルゴリズム

順方向の Angular 予測信号と逆方向 Angular 予測信号を 合成して予測信号を生成する詳細な符号化アルゴリズム を以下に示す.本提案手法は2種類のアプローチからなる.

図3 提案法の概念図

[提案手法 A: ブロック適応切り替え機構なし]

Step A-1: 提案イントラ予測モードの集合を *φ* とし,予測 モード 2 から 9 及び 27 から 34 にセットする.

Step A-2: イントラ予測モードをセットする. 当該モード がゅに含まれるならば, Step A-3に移行する. 含まれない ならば, 従来の HEVC イントラ予測[2]と同じ処理を適用 して予測信号を生成して符号化を実施する. その後, Step A-4に移行する.

Step A-3: 重み付き予測信号を生成する. 順方向の Angular 予測信号を P1[i][j](i,j はブロック内の位置), 逆方向の Angular 予測信号を P2[i][j]とする. このとき, 重み付き予 測信号を P[i][j]とすると,

P[i][j] = f(d)×P1[i][j] + (1 - f(d))×P2[i][j] (1) で生成する. f(d)は重み関数であり,d は予測方向に沿っ たときに復号参照信号を起点(d=0)および予測方向先にあ る復号参照信号を終点(d=1)とし,その復号参照信号から 予測対象信号までの相対的距離を意味する.重み関数の 事例を図 4 に示す.前記(1)より求まった重み付き予測信 号にて符号化を実施する.

Step A-4: 次の予測ブロックへ処理を移行する. 全ての処 理ブロックが終わるまで Step A-1 から A-4 を繰り返す.

本提案法は輝度信号だけでなく, 色差信号についても 同様に適用できる.

[提案手法 B: ブロック適応切り替え機構あり]

Step B-1: 提案イントラ予測モードの集合を φ とし,予測 モード 2 から 9 及び 27 から 34 にセットする.

Step B-2: イントラ予測モードをセットして,従来の HEVC イントラ予測[2]と同じ処理を適用して予測信号を 生成する. この順方向予測の予測信号を保存する. 選択 した当該モードが々に含まれるならば, Step B-3 に移行す る. 含まれないならば, Step B-4 に移行する.

Step B-3: 重み付き予測信号を生成する. 生成する方法は Step A-3 にて示されている方法と同じである.

Step B-4: Step 2 で生成した順方向予測の予測信号と, Step 3 で生成した重み付き予測信号とを用いて, それぞれの場合での RD コストとを計算し, RD コストが良い方を選択する. その予測信号を最終的な予測信号として採用して,本符号化に移る. このとき,重み付きか否かの情報をオーバーヘッドとして符号化し,復号側へ伝送する.

Step B-5: 次の予測ブロックへ処理を移行する. 全ての処 理ブロックが終わるまで Step B-1 から B-5 を繰り返す.

本提案法は輝度信号だけでなく、色差信号についても 同様に適用できる.

図4 重み関数の例 (f(d)=exp(-d²))

3.3 既存改善手法との比較

本提案手法と 2.2 にて記載したイントラ予測の既存改善 手法との比較を述べる.本提案手法は(i)の予測信号生成手 段を工夫する方法に属する.内挿予測方法[3]と傾斜付与 方法[6]が概念的に近いが,本提案手法の重み関数のよう に柔軟に重みを設定することができない.重み関数の設 定次第で,予測誤差エネルギーをより低減でき得る.ま た,残りの既存改善手法[4-5,7-10]に関しては,本提案手 法との併用が可能なので,同時に適用することで大きな 符号化効率改善を期待できる.

4. 評価実験

4.1 実験条件

本提案法を HEVC 拡張規格用参照ソフトウェア HM9.0 RExt (Range Extensions) [11]に実装した. 符号化実験は、 標準化共通条件[12]に従い, RGB4:4:4 の原画像 8 種, 及び YUV4:4:4/4:2:2 の原画像をそれぞれ 7 種ずつの計 22 種類 の画像を用いた. 解像度は 1920×1080 及び 2560×1600 の 2 種類で, ビット深度は 8/10/12 ビットの 3 種類である. 各画像の 10 秒分(240~600 枚)のフレームを QP={17, 22, 27, 32, 37}の 5 種類の QP を用いて全てイントラ符号化した.

提案手法の重み付き予測信号を生成する場合の重み関数は f(d)=exp(-d²)を用いて,提案手法 A/B 共通で同じ関数 を利用した.また,輝度色差両方同じ関数を設定し,全 ブロックサイズに対して本提案方法を適用した.

4.2 結果と考察

重み付き予測信号を全て場合で適用して、ブロック単 位で提案手法の on/off の切り替えを行わない提案手法 A の結果を表 2 及び 3 に示す. QP={22, 27, 32, 37}の 4 点で 計算した中ビットレート(標準化において Main-tier と呼ば れる領域)での結果が表 2 であり, QP={17, 22, 27, 32}の 4 点で計算した高ビットレート(標準化において High-tier と 呼ばれる領域)での結果が表 3 となる.本実験におけるア ンカーデータは,提案手法を導入していないオリジナル の HM9.0 RExt での結果である.

表2及び3より,符号化性能の改善率は輝度でアンカー 比約0.3%であり,色差の2チャンネルについては若干輝 度よりも低かった.高ビットレートの符号化利得は,中 ビットレートと比較して平均的に低い値であった.高レ ートでは復号信号が原信号に近い形で復元されるため,

表 2 提案手法 A の符号化性能と処理時間 (OP={22 27 32 37} Main-tier)

$(Q_1 - (22, 27, 32, 37))$, which there				
	Y	U	V	
RGB4:4:4	-0.32	-0.31	-0.28	
YCbCr4:4:4	-0.38	-0.27	-0.25	
YCbCr4:2:2	-0.24	-0.07	-0.01	
Overall [%]	-0.31	-0.22	-0.19	
Enc-time [%]		103.9		
Dec-time [%]		104.2		

表 3	提案手法Aの符号化性能と処理時間
	(OP={17, 22, 27, 32}, High-tier)

	<u> </u>	,, 0 ,	
	Y	U	V
RGB4:4:4	-0.24	-0.23	-0.20
YCbCr4:4:4	-0.32	-0.20	-0.18
YCbCr4:2:2	-0.20	-0.09	-0.06
Overall [%]	-0.25	-0.17	-0.15
Enc-time [%]	103.2		
Dec-time [%]	103.9		

予測効率が高く、本提案法の利得が小さくなることが原因と考えられる.ただし、色差の結果をみると、 YCbCr4:2:2の結果では高レートでの符号化利得が中ビットレートよりも大きい.処理時間に関しては、表2及び3ともに同じ傾向であり、符号化時間の増加率は約3.5%、 復号処理時間の増加率は約4%であった.

続いて、ブロック単位で重み付き予測を用いるかどう かを RDコストから判定して、ブロック単位で on/off を切 り替える提案手法 B の結果を表 4 から 7 に示す. LCU 単 位で切り替えた結果が表 4 及び 5 であり、PU 単位で切り 替えた結果が表 6 及び 7 である.

表 4 より,符号化性能の改善率は輝度でアンカー比約 0.6%であり,色差の 2 チャンネルについてもほぼ同様の 符号化利得が得られた.高ビットレートとなる表 5 の結果 では符号化利得が約 0.38~0.45%と低下していた.これは 提案手法 A の場合と同様に,復号信号が原信号により近 いため,予測効率が高く,本提案法の利得が小さくなる ことが原因と考えられる.どちらのビットレート帯域に おいても,提案手法 A と比べて良い利得が得られていた. LCU 単位で適応的に重み付き予測を on/off することによ り,利得が増大したと考えられる.本実験では LCU を 64 ×64 に設定しており,オーバーヘッドの符号量も少なく て済むため,良好な結果が得られた.

処理時間については、LCU 単位で従来の予測信号を用 いるパターンと本提案法の重み付き予測信号を用いるパ ターンを2つとも試行して良い方を選択する処理になって いるため、大幅に符号化時間が増大している結果となっ ていた.メモリを低減する理由から本実験では前記2回の 試行後に3回目の本符号化を実施するため、約3倍近い処 理量となっていた.実装を工夫することで約2倍程度に収 めることができると考えられる.また、復号時間につい ては、符号化側で生成したオーバーヘッド情報を復号し て重み付き予測信号を生成するか否かが判断できるため、 符号化処理ほど時間が増大していない結果となっていた. 重み付き信号を生成する処理のみが増加分となり、提案 手法Aと同様、復号時間は約3.5~4%の増加であった.

	Y	U	V
RGB4:4:4	-0.58	-0.60	-0.51
YCbCr4:4:4	-0.71	-0.69	-0.81
YCbCr4:2:2	-0.53	-0.42	-0.46
Overall [%]	-0.60	-0.57	-0.59
Enc-time [%]		305.4	
Dec-time [%]		103.9	

表 4 提案手法 B の符号化性能と処理時間 (QP={22, 27, 32, 37}, Main-tier, LCU 単位での on/off)

表 5 提案手法 B の符号化性能と処理時間 (QP={17, 22, 27, 32}, High-tier, LCU 単位での on/off)

	Y	U	V
RGB4:4:4	-0.40	-0.41	-0.35
YCbCr4:4:4	-0.55	-0.46	-0.53
YCbCr4:2:2	-0.40	-0.27	-0.30
Overall [%]	-0.45	-0.38	-0.39
Enc-time [%]		303.6	
Dec-time [%]	103.5		

表 6 及び 7 の結果は, PU 単位で重み付き予測を切り替 えた結果である. LCU 単位で切り替えた場合と比較して, 符号化利得は全体的に小さくなっていた. これはオーバ ーヘッドの符号量が大幅に増え,予測誤差エネルギー低 減の効果が相殺されたことが原因と考えられる.

PU単位で切り替え、かつオーバーヘッド情報を伝送し ない場合の理想的な利得を表8に示す.復号ができないた め、処理時間は省いた.表8が示す通り、輝度にて約1% 程度改善した.表6との差分がオーバーヘッドにて効果が 相殺された分となる.PU単位で切り替える場合、オーバ ーヘッド情報の削減が重要な課題と思われる.

5. まとめ

本稿では、HEVC のイントラ予測と問題点について論述 し、予測方向先に復号参照信号が存在する Angular 予測モ ードにて、順方向の予測信号と逆方向の予測信号の重み 付き信号を生成することで、予測誤差エネルギーの増大 を抑制する改善方法を検討した.実験の結果,LCU 単位 で提案手法を切り替えることで約 0.45~0.6%の符号化効 率改善を達成した. 今後は, 符号化処理量削減の検討と オーバーヘッド情報の削減方法の検討を行う.また、本 稿の実験で用いた重み関数は、最適であるかどうかは保 証されていない.入力画像の解像度や特性,符号化条件, ビットレートによって最適な重み関数は異なると考えら れるので、重み関数を変更した場合の符号化性能の変動 を確認する予定である.また、ブロックサイズや予測モ - ドに応じて, 重み関数を切り替えるようにすれば, よ り高い符号化利得が得られる可能性もあると考えられる ので、ブロックサイズや予測モードに応じた重み関数切 り替え機構の検討を実施する.

謝辞

本検討に用いた画像の一部は,NTT ドコモ様の許諾を得 て使用したものです.この場を借りてお礼申し上げます.

表 6 提案手法 B の符号化性能と処理時間 (OP={22, 27, 32, 37}, Main-tier, PU 単位での on/off)

	/ //	/ / /	
	Y	U	V
RGB4:4:4	-0.36	-0.16	-0.09
YCbCr4:4:4	0.01	-0.05	-0.11
YCbCr4:2:2	0.12	0.14	0.15
Overall [%]	-0.09	-0.03	-0.02
Enc-time [%]	171.2		
Dec-time [%]	102.7		

表7 提案手法 B の符号化性能と処理時間 (OP={17, 22, 27, 32}, High-tier, PU 単位での on/off)

	, ,, ,		,
	Y	U	V
RGB4:4:4	-0.33	-0.15	-0.09
YCbCr4:4:4	-0.16	-0.02	-0.04
YCbCr4:2:2	-0.06	0.11	0.13
Overall [%]	-0.19	-0.03	-0.00
Enc-time [%]	172.2		
Dec-time [%]	102.4		

表 8 提案手法 B の理想符号化性能(オーバーヘッドなし) (OP={22, 27, 32, 37}, Main-tier, PU 単位での on/off)

	Y	U	V
RGB4:4:4	-1.00	-0.79	-0.68
YCbCr4:4:4	-1.10	-0.82	-0.91
YCbCr4:2:2	-0.91	-0.38	-0.39
Overall [%]	-1.01	-0.67	-0.66

参考文献

- [1]"Information technology Coding of audio-visual objects Part 10: Advanced Video Coding," ISO/IEC 14496-10, 2005.
- [2]B. Bross, W.-J. Han, J.-R. Ohm, G. J. Sullivan, Y.-K. Wang and T. Wiegand, "High Efficiency Video Coding (HEVC) text specification draft 10 (for FDIS & Last Call)," JCTVC-L1003_v34, 12th meeting of JCT-VC, January, 2013.
- [3]塩寺,谷沢,中條,"ブロックベース外挿/内挿予測に基づくイントラ符号化,"画像符号化シンポジウム PCSJ2006, pp. 123-124, November, 2006.
- [4]高橋,村上,"原画像を利用した新しい画面内予測による H.264/AVC 拡張方式,"画像符号化シンポジウム PCSJ2007, pp. 43-44, October, 2007.
- [5]松尾, 坂東, 高村, 如澤, "複数参照ラインを用いたイントラ予測 改善方法,"電子情報通信学会論文誌 D, Vol. J94-D, No. 12, pp. 1940-1942, December, 2011.
- [6]松尾,高村,上倉,八島,"傾斜付きイントラ予測の基礎検討,"画 像符号化シンポジウム PCSJ2007, October, 2007.
- [7]S. Matsuo, S. Takamura, and Y. Yashima, "Intra prediction with spatial gradients and multiple reference lines," Proc. of PCS2009, May, 2009.
- [8]S. Matsuo, S. Takamura, and H. Jozawa, "Improved intra angular prediction by DCT-based interpolation filter," Proc. of EUSIPCO 2012, pp. 1568-1572, August, 2012.
- [9]X. Cao, C. Lai, Y. Wang, and Y. He, "Short distance intra coding scheme for HEVC," Proc. of PCS2012, pp. 501-504, May, 2012.
- [10] Y. Yen, and M. Karczewicz, "Improved intra coding," ITU-T Q.6/SG16 VCEG, VCEG-AG11, October, 2007.
- [11] HM RExt software 9.0, https://hevc.hhi.fraunhofer.de/trac/hevc/ browser/branches/HM-range-extensions.
- [12] D. Flynn, "Common test conditions and software reference configurations for HEVC range extensions," JCTVC-K1006, 11th JCT-VC meeting, Shanghai, CN, 10-19 October, 2012.
- 10 第3分冊