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Abstract 
Traditional array processors randomly access to input/ 

coefficient data stored in memory many times during the three 
dimensional discrete cosine transform (3D-DCT) calculation. 
Hence, it becomes a bottleneck of fast calculation. In this paper, 
a three dimensional array processor dedicated to 3D-DCT is 
proposed. The array processor tremendously reduces the data 
swapping or replacement during the calculation. Thus, it 
contributes to the performance improvement. The computational 
complexity of the proposed array processor is O(N) for an 
N×N×N input data cube while that of the 3D-DCT direct 
calculation is O(N4). A specified I/O architecture and 
throughput/cost-effective architectures are also discussed for 
practical implementation. Experimental results of an FPGA 
(Field Programmable Gate Array) implementation show that our 
architecture has enough performance for real-time 3D-DCT 
calculation on its scalable architecture. 

1. Introduction 
The advancement of digital imaging applications like 

high-definition television, teleconference, medical and space 
exploration images compactions [1], and portable video player 
accelerates the demands for effective image compression 
techniques. Prospective systems such as portable video chatting 
require high performance computing to realize video 
compression, because the transmission bandwidth is often limited. 
The 2D-DCT (two dimensional discrete cosine transform) is a 
technique for spatial information compression, in 2D images [2]. 
The 3D-DCT extends the DCT energy compaction properties to 
integral 3D images and to the spatio-temporal coding of 2D 
video sequences [2, 3]. The image data could be compressed to 
1/10 sizes by 3D-DCT transform without dropping of its image 
quality [4]. This paper will discuss an array processor that 
performs 3D-DCT effectively on the 3D-LSI. The block diagram 
of the 3D-DCT/Inverse DCT (IDCT) video codec is 
schematically shown in Figure 1. 

Compared to motion-estimation/compensation based methods, 
the 3D-DCT approach has three essential factors for portable 
video compression systems:  
 No motion estimation is needed, hence, it greatly decreases 

the number of en/decoding operation per pixel compared to 
a motion-estimation/compensation based approach. 

 The encoder and decoder are composed of an equivalent 
architecture; coefficient data stored in register are different. 

 
 
 
 

 Figure 1: Block diagram of the 3D-DCT/IDCT video codec 
 

Figure 2: Array processor implementation image on a 3D-LSI 
 
 There is no relationship between the complexity of the 

implementation and the compression ratio. [5] 
Direct calculation of 3D-DCT requires a long time so that a 

real-time application cannot be used because we have to 
randomly access coefficients and input data stored in memories 
many times. Thus, researchers have proposed many algorithms 
and hardware architectures for rapid calculation of 3D-DCT, 
especially for the real-time applications. In [6] and [7], a parallel 
algorithm for 3D-DCT computation based on butterfly 
calculation is proposed. The butterfly calculation and recursive 
addition is carried out in log N steps [7]. However, it is difficult 
to design the 3D butterfly interconnection into hardware 
architecture, because of its complex structure, when N is large. In 
this research, a more practical array processor dedicated to 
3D-LSI is proposed. As shown in Figure 2, by using the 3D-LSI, 
we will be able to connect planes of image sensor array, 
processors, memory module, and other devices. Our array 
processor has N×N×N toroidal-cube-connected PEs (Processing 
Elements). Each PE has a homogeneous structure: a MAC 
(multiply-accumulation) unit, a register-file, and wires connected 
to adjacent PEs. Compared to the other array processors, our 
array processor can tremendously reduce the data swapping or 
replacement during the 3D-DCT calculation by introducing a 
smart data transfer scheme with a simple PE array structure. This 
is a key to realize a high-speed 3D-DCT. In addition, the trend of 
three-dimensional large scale integration (3D-LSI) technologies 
[8] could support to realize our 3D array processor that can 
directly handle cubical (3D) data streams. 
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Section 2 shows the definition formula of 3D-DCT. In Section 
3 and 4, the array processor architecture and its I/O interfaces for 
2D devices are proposed. Throughput/area improved 
architectures are shown in Section 5 and 6. Some experimental 
results and evaluations are presented in Section 7. Conclusions 
are discussed in Section 8. 

2. Definition formula of 3D-DCT 
Let XN×N×N = [X(i,j,k)], 0 ≤ i,j,k ≤ N-1, be an input data cube. 

The 3D type-II discrete cosine transform of X(i,j,k), and a data 
cube YN×N×N = [Y(s,r,p)], 0 ≤ s,r,p ≤ N-1, can be defined as: 
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The 3D-DCT is a linear transformation that converts an 
original 3D coordinate system (i,j,k) into a new 3D system, 
(s,r,p). Coefficient matrix C(k,p) = C(j,r) = C(i,s) = C(u,v) is used 
for converting k-, j-, and i-axis into p-, r-, and s-axis. 

3. Array Processor Architecture for 3D-DCT 

3.1 Overview 
The structure of PE used in our array processor is shown in 

Figure 3. For N×N×N 3D-DCT, each PE is mainly composed of 
three I/O selectors, a MAC unit, and 3N+4 registers. Each 
selector is controlled by a state signal and synchronized with 
clock signal. 3N registers are for coefficients, 4 registers are for 
input data and calculation results. 

Figure 4 overviews our array processor architecture. Each PE 
is basically connected with adjacent PEs; the end PEs have torus 
connections. The data transfer direction is shown in Figure 5. All 
PE has homogeneous structure and performs systolically. The 
sequence to acquire the result of N×N×N 3D-DCT is as follows: 
data input, step1, 2, and 3 for 3D-DCT calculation, and data 
output. On the traditional array processors, the data swapping or 
replacement during the 3D-DCT calculation was performance 
bottleneck, because of its high-speed operations and low-speed 
memory data access. This proposed array processor keeps the 
input data integrity and locality, and there is no data 
re-arrangement during its 3D-DCT calculation. This is a 
significant feature to improve the performance. 

3.2 Data Input/Output 
  This array processor inputs N×N data simultaneously. The 
input ports are arranged on k = N-1 plane; each PE transfers 

Figure 3: PE architecture for 3D-DCT array processor. Each 
selector is controlled by state signal and synchronized with clock 
signal, 1) Receive data from adjacent PE and send it to 
destination register, 2) Perform multiply-add operation, 3) Send 
data stored in register to adjacent PE 
 

Figure 4: Overview of the array processor architecture for 4×4×4 
3D-DCT (Control unit is not shown) 

 
 
 
 
 
 
 
 
 

Figure 5: Direction of the data transfer 
 
input data to k-1 adjacent PE, along k-axis. N-time process needs 
to input all of the N×N×N data. The output sequence is almost 
the same as the input. The output data of PEs at k = 0 plane are 
fed to the corresponding PEs at k = N-1 plane using the torus 
connections. The PEs at k = 0 plane also has output ports, and 
final results are obtained using the output ports. The partial I/O 
connections of this array processor are shown in Figure 6. 

3.3 3D-DCT Calculation 
As shown in Section 2, 3D-DCT is a heavy task that requests 

many MAC operations, and it is difficult to realize a hardware 
circuit to perform the 3D-DCT directly. However, since 3D-DCT 
is a separable transform, we can implement it as three 1D 
transforms and reduce the hardware cost [9]. In our array 
processor, there are three steps to obtain the 3D-DCT result. To 
perform 3D-DCT with ordinary single or array processors,  
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 the coefficients and input data stored in memory have to be 
accessed many times, and/or  

 some rearrangements of the partial results are required 
whenever each 1D transform is finished. 

These processes are significant performance bottlenecks for 
the fast 3D-DCT calculation. By pre-storing the 3D-DCT 
coefficients in each PE, and moving the partial calculation results 
appropriately using the torus connections between PEs, our array 
processor can completely eliminate the above mentioned data 
rearrangement to obtain the 3D-DCT results. This is a key issue 
why our array processor can perform 3D-DCT effectively. 

In the first step, multiplication of X(i,j,k) and C(k,p) is 
performed. Then, X(i,j,k) is multiplied with C(j,r) at the second 
step. Finally, multiplication of X(i,j,k) and C(i,s) is done at the 
third step. Each step has N micro-steps. The processing sequence 
of PE in every micro-step is as follows: 
 First, receive data from adjacent PE and store it to a 

register. 
 Second, multiply received data with a coefficient which is 

pre-stored in registers on each PE. Then, the calculation 
result is accumulated into a register. 

 Finally, transfer received data to adjacent PE. 
Transferred data in each step is: 

 input data, for the 1st step, or  
 the calculation result of 1st step, for the 2nd step, or  
 the calculation result of 2nd step, for the 3rd step. 

For each micro-step, the coefficient data used in PE(i,j,k) is 
 ),mod)(( kNmicrostepkC +  for the 1st step, or  
 ),mod)(( jNmicrostepjC +  for the 2nd step, or  
 ),mod)(( iNmicrostepiC +  for the 3rd step. 
The coefficients are preset in each PE before processing. For 
3D-IDCT, data of transposed coefficient matrix tC is used and the 
matrix element is preset on each PE. 

The total amount of calculation time-steps of the proposed 
array processor is 3N for an N×N×N size input data cube. Thus, 
its computational complexity becomes of O(N) while that of the 
3D-DCT direct calculation is O(N4). 

4. I/O Interfaces 
 The I/O interface can adapt any N×N×N array processor tuned 
to 3D-DCT. The I/O parts are connected to a surface of k-axis of 
PE array. I/O interfaces are provided to implement our array 
processor on 2D devices. Figure 7 overviews this I/O architecture. 
They consist of six parts: an input memory, input address 
generator, input buffer, output buffer, output address generator, 
and output memory. As shown in Figure 7, the input architecture 
performs following operations in each clock cycle: 
 Derive input memory address by using input address 

generator. 
 Get one pixel data from input memory and put it into 

proper FIFO of the input buffer. 
 Update some control signals for the input buffer, address 

generator, and array processor. 
In addition, the input buffer sends sub-frame data structured by 

N×N pixels to the array processor simultaneously when the array 
processor requests data for the next calculation, and the input 

Figure 6: One of the i-k planes’ sliced view 
 

Figure 7: Block diagram of I/O interface architecture 
 

Figure 8: Overview of address generator 
 
memory gets N frames data from the host computer at 
appropriate timing. 

The input memory is used as a frame buffer for the input data. 
This memory is connected to a host computer and the input 
buffer. The video data from the host computer are stored in this 
memory sequentially. On the other hand, output data of the input 
memory is managed by input address generator to generate N×N 
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pixels sub-frame data. Input memory has 8 bits data word and 
enough capacity to contain N×2 frames video data. The data sent 
to array processor is overwritten by new input data. The array 
processor is able to begin its operations after the first N-frame 
video data arrived to input memory. 
  The input address generator produces memory address for the 
input memory access in each clock cycle. It requests the 
following four parameters to work: base address (BA), vertical 
resolution of video data (RV), horizontal resolution of video data 
(RH), and block size of sub-frame image data (N). As shown in 
Figure 8, the address generator has six address tables for address 
calculation and an adder. Contents of each address tables are 
calculated by following expressions: 

MDx[i] = i, for 0 ≤ i < N 
MDy[i] = RH×i, for 0 ≤ i < N 
MDz[i] = RH×RV×i, for 0 ≤ i < N 
BMDx[i] = N×i, for 0 ≤ i < RH/N 
BMDy[i] = RH×N×i, for 0 ≤ i < RV/N 
BMDz[i] = RH×RV×N×i, for 0 ≤ i < 2 

Here, MDx, MDy, and MDz are distances on each axis and used to 
generate N×N×N data block for the array processor. BMDx, 
BMDy and BMDz are distances of data block and used to control 
data block flow. 

The input address generator selects a proper value from these 
tables to generate a memory address. Here, the memory address 
is easily obtained by the following expression: 

ADDR = BA+ MDx + MDy + MDz + BMDx + BMDy + BMDz 
Here, ADDR is the target memory address for the input memory 
access. 
  The input buffer is used for timing gap absorption between the 
array processor and the input memory. Figure 9 shows the input 
buffer in detail. It has N×N asynchronous FIFOs and a buffer 
controller. The buffer controller has three control signals: 
write-enable for each FIFO, full for the input address generator, 
and read-request-enable for the array processor. The 
write-enable signal controls writing in FIFOs to store N×N pixels 
sub-frame data correctly. The full signal is asserted when all 
FIFOs become full. The input address generator doesn’t update 
the input memory address when full is asserted. The 
read-request-enable signal is asserted when FIFOs have enough 
data for the next 3D-DCT calculation. The array processor stops 
input operations until read-request-enable is asserted. The input 
buffer receives one pixel data from the input memory and put it 
into proper FIFO to generate a set of the pixel data for one video 
sub-frame containing N×N pixels. On the other hand, the input 
buffer sends the sub-frame data for the next 3D-DCT calculation. 
The read-request from the array processor is directly connected 
to each FIFO to request the next data to the FIFO. 

The data flow scheme of the output architecture is opposite to 
that of the input architecture. The output buffer is used for timing 
gap absorption between the output memory and the array 
processor output. Figure 10 overviews the output buffer 
architecture. The output buffer receives the data for one video 
sub-frame from the output ports of the array processor 
simultaneously and sends them to proper locations of the output 
memory using a selector. As shown in Figure 10, the buffer 
controller generates four control signals for the output buffer. 

Figure 9: Overview of input buffer 
 

Figure 10: Overview of output buffer 
 
The select and read-enable signals are used to control output data 
of FIFO. The write-request-enable signal is asserted when each 
FIFO have enough capacity to receive N frames data from the 
array processor. The array processor is able to send data only 
when this signal is asserted. The empty signal is asserted when all 
FIFOs become empty, and connected to write-enable port of the 
output memory and the output address generator. The data in the 
output memory and the output memory address are updated only 
when empty is negated. 
  The output address generator generates the memory address 
for the output memory access. The processing sequence of the 
output address generator is the same as input address generator. 
  The output memory stores the output data from the array 
processor. The data allocations in the output memory are the 
same as those of the input memory. The data from the output 
buffer is stored to the proper locations of the output memory 
generated by the output address generator. Moreover, the output 
memory sends N-frame data to the host computer simultaneously 
at a proper timing. 
  By using this proposed I/O interfaces, an effective I/O data 
management is realized without any data stream modifications in 
the host computer. 

5. Throughput Improvement 
To improve the throughput of the array processor shown in the 

previous section, two pipelined architectures featuring data 
pipelining mechanisms are newly proposed. Although the 
improved architectures request more hardware resources 
compared to the original one, their performance improvement is 
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significantly expected. 
The first version of the pipelined architecture requires the 

following hardware resources:  
 ×2 MACs 
 Input ports are arranged on i = N-1 plane; each PE transfers 

input data to i-1 adjacent PE, along i-axis 
The pipeline scheme is shown in Figure 11. Second version of 
pipelined architecture requires the below items:  
 I/O specified wires among PEs 
 I/O operations are separated from calculation 
 ×3 MACs 
 3N+4∙3 registers 

The pipeline scheme is shown in Figure 12. Pipelined ver.1 
architecture performs 3D-DCT calculation ×2.5 faster than 
sequential architecture, theoretically. Pipelined ver.2 architecture 
performs ×5.0 faster than sequential architecture, however, it 
costs much larger than ver.1. In addition, its structure becomes 
more complex, especially for wiring.  
 

Figure 11: Pipeline scheme for pipelined ver.1 
top: process in each stage / bottom: data transfer direction 
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Figure 12: Pipeline scheme for pipelined ver.2 

top: process in each stage / bottom: data transfer direction; input: 
input data for Stage X, Output: output data of Stage X 

6. Area Improvement 
Since our array processor needs O(N3) hardware resources, 

decreasing them, especially multiplier, is significant issue for 
implementation. Figure 13 shows the number of register and 
operator in our sequential/pipelined architecture in the case of N 
= 2, 4, and 8. If we could perform N3 size 3D-DCT by (N/2)3 size 
architecture, the number of operator decreases exponentially. 

Assume N=8, 4×4×4 array processor architecture performing 
8×8×8 3D-DCT is shown in Figure 14. The features of this 
architecture are as follows: 
 8×8×8 3D-DCT calculation is divided into 8 4×4×

4-sized 3D-DCT calculation. 
 4×4 FIFO are inserted into each toroidal-connection of i-, 

j-, and k-axis; each FIFO stores 4 data. 
 3×8 time-steps is needed for 4×4×4-sized 3D-DCT 

calculation. 
 Number of operator is 4×4×4 (1/8). 
 

Figure 13: Number of registers and MAC 
Seq: Sequential, P1: Pipelined ver.1, P2: Pipelined ver.2 

 

Figure 14: 8×8×8 3D-DCT calculation by using 4×4×4 array 
processor 

 
 Number of coefficient registers for each PE is same as 8×8

×8 array processor architecture. 
 Number of I/O data is 43×4 to derive 4×4×4-sized 

3D-DCT calculation result. 
Compared with the architectures proposed in Section 3, the 
number of multiplier/adder is exponentially reduced. Thus, it 
makes easy to implement into area-limited hardware such as 
FPGAs (Field Programmable Gate Arrays). 

7. Experimental Results 

7.1 Array Processor 
First, we evaluate the theoretical minimum operating 

frequencies to perform real-time 3D-DCT/IDCT analytically. We 
assumed N = 8, one micro-step operates in 2 clocks, and input 
video data is single color. For fps (frame per second) = 32 and 60, 
the minimum operating frequencies of proposed architectures are 
shown in Table 1. 
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For the VGA-size input video data, the minimum operating 
frequency of: 
 sequential architecture is less than 200/360 KHz,  
 pipelined version 1 architecture is less than 80/150 KHz,  
 pipelined version 2 is less than 40/75 KHz, when fps = 

32/60; this is considered one of the frequently-used video 
data formats. The shown frequency values are very low, 
thus, it affords low-power consumption. 

For the UXGA-size input video data, the minimum operating 
frequency of: 
 sequential architecture is less than 2.3 MHz,  
 pipelined version 1 architecture is less than 1.0 MHz,  
 pipelined version 2 is less than 0.5 MHz, when fps = 60; 

this is considered one of the high-quality video formats. 
The frequency values above are only a few MHz. Playing 
high-quality video on the portable devices is one of the 
upcoming demands, so this architecture will be useful in 
such applications. 

To perform 3D-DCT/IDCT for RGB-color video, three times 
of shown operating frequency is required. 4×4×4 array processor 
architecture performing 8×8×8 3D-DCT proposed in Section 5 
needs 8 times the frequency. 

To estimate and evaluate the actual hardware cost of our 
architecture, it is implemented to a Xilinx FPGA; we used 
"Xilinx ISE 9.2i" as a logic synthesis tool and “Virtex-5 LX330” 
FPGA as an implementation target for this purpose. The device 
utilizations are shown in Table 2. Here, we used the embedded 
multipliers on the Virtex-5 FPGA to realize the multiplications 
for 3D-DCT. Because the number of embedded multipliers is 
limited on the FPGA, the sequential architecture for N = 4 is only 
examined. As shown in Table 2, our architecture does not require 
large hardware resources. We can easily estimate the logic 
utilization for larger N, because it will increase almost 
sequentially: for 2 times of N, logic increases 8 times. 

7.2 I/O Interfaces 
  In this section, we evaluate performance of the I/O architecture. 
We selected 4×4×4 sequential version array processor and 60 fps 
video data as a target, because this combination demands one of 
the highest operating frequencies to I/O architecture. The 
required operating frequencies and simulated operating 
frequencies are shown in Table 3: first row shows size of video 
data, and first column shows description of each row. The 
implementation target is also “Virtex-5 FPGA”, and logic 
synthesis tool is “Xilinx ISE 9.2i”. As shown in Table 3, 
operating frequencies are much higher than required operating 
frequencies, so it has enough performance for real-time 3D-DCT 
transform; although it requires higher operating frequency than 
array processor’s operating frequencies, because of the 
Von-Neumann bottleneck. In other words, if a 3D-LSI device is 
our implementation target, its performance becomes dramatically 
increase. 

Next, we evaluate logic utilization of I/O architecture. Figure 
15 shows logic utilizations and required memory capacitances for 
each resolution size. As shown in this figure, only 1.2 % registers 
and 2.5 % LUTs are required at a maximum. Thus, this I/O 
architecture is cost-effective for registers and LUTs. However, 
required memory capacity severely increases when resolution 
size becomes large. Thus, some external memory modules will 
be needed if the implementation target does not have enough 
memories. 

8. Conclusions 
This paper proposed a three dimensional array processor 

Table 1 – Minimum operating frequency for real-time 
en/decoding; N=8, Seq: Sequential, P1: Pipelined ver.1, P2: 

Pipelined ver.2 

240.1 [KHz]480.1 [KHz]1,200.0 [MHz]1600x1200UXGA

163.9 [KHz]327.7 [KHz]819.2 [KHz]1280x1024SXGA

98.4 [KHz]196.7 [KHz]491.6 [KHz]1024x768XGA

60.1 [KHz]120.1 [KHz]300.0 [KHz]800x600SVGA

38.5 [KHz]76.9 [KHz]192.0 [KHz]640x480VGA

9.7 [KHz]19.3 [KHz]48.0 [KHz]320x240QVGA

Min. freq. for real-
time en/decoding 

(P2)

Min. freq. for real-
time en/decoding 

(P1)

Min. freq. for real-
time en/decoding 

(Seq)
Sizefps = 32
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307.3 [KHz]614.5 [KHz]1,536.0 [KHz]1280x1024SXGA

184.4 [KHz]368.7 [KHz]921.6 [KHz]1024x768XGA

112.6 [KHz]225.1 [KHz]562.5 [KHz]800x600SVGA

72.1 [KHz]144.1 [KHz]360.0 [KHz]640x480VGA

18.1 [KHz]36.1 [KHz]90.0 [KHz]320x240QVGA

Min. freq. for real-
time en/decoding 

(P2)

Min. freq. for real-
time en/decoding 

(P1)

Min. freq. for real-
time en/decoding 

(Seq)
Sizefps = 60
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Table 2 – Device utilization summary (estimated values) of 
sequential architecture, for N = 4; Target FPGA: Virtex-5 LX330, 

Logic synthesis tool: Xilinx ISE 9.2i 

33%19264Number of DSP48Es

24%1,200293Number of bonded IOBs

46%10,7235,027Number of fully used bit slices

4%207,36010,132Number of slice LUTs

2%207,3605,618Number of slice registers

UtilizationAvailableUsedLogic utilization

33%19264Number of DSP48Es

24%1,200293Number of bonded IOBs

46%10,7235,027Number of fully used bit slices

4%207,36010,132Number of slice LUTs

2%207,3605,618Number of slice registers

UtilizationAvailableUsedLogic utilization

 
 

Table 3 – Required operating frequencies for 8×8×8-size 
sequential array processor and operating frequencies 

1600×1200
1280×1024

1024×768
800×600
640×480
320×240

Size

279.52 [MHz]288.75 [MHz]157.13 [MHz]SXGA

280.15 [MHz]280.15 [MHz]57.25 [MHz]SVGA
287.38 [MHz]287.38 [MHz]93.48 [MHz]XGA

280.15 [MHz]280.15 [MHz]223.78 [MHz]UXGA

279.67 [MHz]279.67 [MHz]23.01 [MHz]VGA
284.20 [MHz]284.20 [MHz]5.78 [MHz] QVGA
Op.  freq. (out)Op. freq. (in)Req. freq.
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Figure 15: Logic utilizations and required memory capacitance 
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dedicated to 3D-DCT. The array processor tremendously reduces 
the data swapping or replacement during the 3D-DCT calculation. 
Thus, it must contribute to the performance improvement. The 
computational complexity of the proposed array processor is 
O(N) for an N×N×N input data cube while that of the 3D-DCT 
direct calculation is O(N4). In addition, more advanced 
architecture featuring data pipelining technique was proposed to 
improve throughput or hardware implementation costs. The 
pipelined architecture performs 3D-DCT calculation × 2.5 or 
×5.0 faster than the basic architecture based on a sequential data 
handling. The 4×4×4 array processor architecture performing 
8×8×8 3D-DCT reduces its operators to 1/8 of original 8×8×8 
architecture. Furthermore, the proposed architecture was 
implemented with its specified I/O architecture that could adapt 
this three dimensional array processor to two dimensional 
devices and realized on an FPGA. The evaluation result shows 
that our architecture has enough performance for real-time 
applications. 
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