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1. Abstract 
In modern superscalar processor, branch misprediction penalty 

becomes a critical factor in overall processor performance, 
especially in deeply pipelined processors.  The branch 
misprediction penalties include branch resolution time and refill 
the pipeline. A large number of aggressive schemes (e.g. 
checkpoint scheme) are widely used in most of current 
approaches to reduce the branch resolution time. However, 
current recovery mechanisms still implicitly reduce the 
Instruction Per Cycle (IPC) because the mispredicted instructions 
saved in the front-end stages must be flushed, and then the 
instructions from correct path are restarted from fetch stage. 

In this paper, we propose a recovery mechanism, called 
Recovery Critical Misprediction (RCM), to reduce the branch 
misprediction penalty due to re-fill and flush. The mechanism 
uses a Simplicity Trace Cache (STC) to trace mispredicted 
instructions that are enough critical, and selectively forks a 
second path from STC following a conditional branch instruction. 
Upon a misprediction, the processor can immediately starts 
issuing correct instructions from the alternate path. Experimental 
results employing SPECint 2000 benchmark show that, using a 
processor with RCM, IPC value is significantly improved by 
10.7% on average compared with a conventional processor 
without RCM. 

2. Introduction 
A deeper pipeline is widely used to reduce processor cycle 

time for higher performance in the modern processors, it causes 
another performance problem for branch misprediction. The 
research proposed by E. Sprangle indicated that branch 
mispredictions are the single largest contributor to performance 
degradation in modern superscalar processors [1]. Two options 
exist to solve this problem: increasing prediction accuracy [19] 
[21] and speeding up the misprediction recovery process. Several 
branch prediction mechanisms have been proposed [2] [3] and 
used to alleviate the effect of branch penalty in processor 
performance. On the other hand, modern processors provide 
deeper pipeline (e.g. 14 stages in the IBM Power 4 [6] and 20 
stages in the Pentium 4 [8]) to achieve a very high clock 
frequency. As a result, the performance bottleneck in advanced 
processor designs continually shifts toward the penalty due to the 
misprediction recovery.   

A large number of aggressive recovery schemes have been 
widely used to reduce the mispredicted branch resolution time by 
reducing the time of state restoration [24] ]25] [26] . It is because 
that branch misprediction recovery requires stalling the front-end 
of the processor to repair the architectural state. However, branch 
misprediction still implicitly reduces the Instructions Per Cycle 
(IPC) because the pipeline still must be flushed, and re-filled 
with instructions from the correct path after the state is resolved. 

During the re-fill time, there is a zero-issue region where no 
instructions issue, which is approximately equal to the time it 
takes to re-fill the front-end pipeline (i.e., a number of clock 
cycles equal to the front-end pipeline length). 

To resolve the problem, a more jacobinical approach is 
proposed to hide the re-fill time by executing multiple program 
paths simultaneously [7] [13] [20]. By increasing the hardware 
cost, the processor can fork a second path from both paths 
following a conditional branch instruction. Then, the instructions 
from wrong path are selectively flushed when the branch is 
solved.  There are still three factors that severely degrade 
performance: 1) fetching from multiple path increases the burden 
of fetch stage. The port of fetch stage must be double to 
simultaneously fetch instructions from both paths following a 
conditional branch instruction. 2) Miss hit rate of instruction 
cache increases because the alternative path may not be in the 
cache. 3) Forking a branch made for non-critical dependences 
will not improve performance; even worse, if the current branch 
prediction is correct, the unused instructions from alternative 
path may severely degrade performance. 

In this paper, we propose a new mechanism called Recovery 
Critical Misprediction (RCM) to aim at minimizing the branch 
misprediction penalty. The mechanism uses a Simplicity Trace 
Cache (STC) to trace a few decoded instructions that are enough 
criticality. Then during subsequent branch predictions, if STC is 
hit, the instructions from alternative path are selectively fed to 
the rename stage with predicted instructions at the same time, 
and immediately provided to execution unit when the 
misprediction occurred. Therefore, the processor does not need 
to start fetching the correct path from fetch stage. RCM makes 
the following contributions: 

RCM reduce the misprediction penalty caused by re-fill and 
flush. A small simplicity cache is used to save the decoded 
instructions from the alternative path, and selectively uses these 
instructions according to the confidence mechanism of the 
branch:  

1. RCM provides a critical mechanism to filter the 
instructions. The critical mechanism ensures the STC to 
select “good traces” for keeping, and avoid the non-
critical branch forking to degrade performance. 

2. RCM efficiently reduces the burden of fetch process that is 
big bottleneck in modern processor. The instructions 
from alternative path are directly provided by STC at 
rename stage, and recessively reduce the instructions 
cache miss rate due to fetching instructions from 
alternative path. (Although some dual fetch port 
techniques are used to resolve the above problem, it is 
difficult to apply it in embedded processor [13] [22] 
[23].) 
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Experiment results using SPECint2000 benchmark show that 
average IPC improvement is 10.7% compared with a processor 
without RCM. 

The remainder of this paper is organized as follows. Section 3 
presents the motivation of our proposal and related work. Section 
4 analyzes the contributors to the branch misprediction penalty. 
Section 5 introduces the critical path prediction. The detailed 
design of RCM is described in section 6. Section 7 describes our 
experimental evaluation and discusses RCM performance. 
Finally, Section 8 summarizes the main conclusions of this work. 

3. Background and Related Work 
As the trend of utilizing deeper pipeline reduces processor 

cycle time from high performance, the branch mispredictions are 
a significant hinder to performance. The overall performance 
penalty due to branch mispredictions is the product of the branch 
misprediction rate and the branch misprediction recovery. A very 
large body of research has been targeted at improving branch 
prediction rate [2] [19] [21]. Currently, more and more 
researches begin to tend to reduce the branch misprediction 
penalty. There are two major ways of reducing the branch 
misprediction penalty. One way is speeding up misprediction 
solution time. For example, MIPS R10000 [4] using the 
retirement map technique, and Alpha 21264 [5] employing the 
Global Checkpoints to resolve misprediction within very few 
cycles. The other is that reducing the misprediction penalty due 
to re-fill and flush. Commonly, the processor executes multiple 
program paths simultaneously to hide the re-fill time (e.g. the 
IBM 3168 and 3033 mainframes could fetch instructions from 
both paths [28]). 

Early researches propose dual fetch/decode mechanisms in a 
very simple pipelined processors [15] [23] to reduce the penalty 
due to misprediction. On the other hand, a special-purpose cache 
called Misprediction Recovery Cache is proposed to achieve the 
same purpose for an in-order CISC pipeline [29]. A more 
aggressive approach is proposed in [20], where a selective dual 
path execution (SDPE) allows executing instructions on both 
branch paths when there is a relatively high likelihood that the 
prediction will be wrong. All of those either need high hardware 
cost to support or are only suitable for simple pipeline and CISC. 

 In [7], a Dual path Instruction Processing (DPIP) fetches, 
decodes, and renames, but it does not execute instructions from 
the alternative path for low confidence predicted branch at the 
same time as the predicted path is being processed. This method 
reduces the re-fill penalty, and achieves a good trade-off between 

performance and complexity. Although DPIP employs the 
confidence mechanism to improve the usage of the instructions 
from alternative path, the performance would be decreased 
because the non-critical branch instructions with low-confidence 
are forked, and dual fetch mechanism increases the burden of 
fetch stage. Especially, an embedded processor 
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 Branch Misprediction Penalty Analysis 
This section analyzes the branch misprediction penalty. The 

branch misprediction penalty is defined as the number of cycles 
lost due to a mispredicted branch. At first we have evaluated 
mispredictions per 1000 instructions for the SPECint 2000 
benchmarks (details regarding the experimental setup are given 
in section 7). The results are shown in Figure 1. Based on the 
further analysis proposed by Eyerman [27], the sources of 
performance loss 

e components: 
e frontend pipeline re-fill time. It is the latency between 
the time that the branch misprediction is discovered and 
the time that the first instruction is fetched, decoded, 
renamed, and issued to instr
re-fill time is a fixed value. 
rain time. This is the resolution time to drain incorrect 
instructions from the Reorder Buffer (ROB). The drain 
time strongly dependences on the program’s inherent 
ILP. Programs with low ILP tend to have a large drain 
times, conversely, pro
a shorter drain times. 

indow-fill penalty. This is the performance loss because 
there is a zero-issue region where no instructions issue 
until the instructions from correct path 
into instructions window.  
n-unit latencies. This is the performance loss due to the 
functional unit mix. The non-unit laten
proportional to instruction execution latencies 
ort D-cache misses. This is a factor easy to be neglected. 
An ideal L1/L2 D-cache is assumed. Actually, the 
branch misprediction
of L1 or L2 cache.  

Benefiting from above analysis, the main contributors of 
misprediction branch penalty are simply divided into two 
categories. One is inherent constraint of processor (e.g., frontend 
pipeline length, latency of each execution unit, latency of miss 
cache etc.). The other is average critical path, which is more 
complex. Branch mispredictions do not occur in isolation; they 
interact with other miss events. The penalty for a particular 
branch misprediction often depends on the preceding miss event 
(conversely, it can affect the next miss event). For example, the 
misprediction penalty is hidden under the long D-cache miss 
penalty if the mispredicted branch is not fed by the long D-cache 
miss. On the other hand, we could potentially speed up the 
program more by caching the instructions that are critical. 
Therefore, we would rather only optimize the
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Our proposal mainly targets at hiding the latency of re-fill and 
flush simultaneously, considering the effect of critical path. The 
key is what is critical for a branch misprediction recovery 
(described in section 5). 

Figure 2 Dependence graph model. The graph 
models a sequence of 9 consecutive instructions (from i1 
to i9) in a program. The ROB is 4-entries. Instruction i7, 
a mispredicted branch, induces an E-D edge to 
instruction i8 to reflect the constraint that correct path 
instructions cannot be dispatched into the window until 
a misprediction is resolved. The critical path through 
this code sequence is highlighted with the thicker 
dependence edges. All edges are labeled with their 
latencies. 

5. Critical Paths Mechanism 
The RCM is efficient in terms of power and access time due to 

small size of STC employed in it, but suffers from low utilization 
of the memory space. Critical path mechanism is used to increase 
its effectiveness despite the limited size. Critical path mechanism 
tells processor which branch is enough critical to decide whether 
the branch needs to keep. Based on Brian Fields and Ras Bodik's 
work [9] on criticality, we can easily know which instruction is 
from critical path. 

5.1 Defining Criticality 
How to exactly define the critical path through a program 

depends very much on the context in which criticality is being 
used. A static critical prediction, which commonly employs 
compilers for improving instruction scheduling, is only involved 
in inherent program bottlenecks. The critical path using a static 
critical prediction is constant throughout execution, it can 
frequently change in a dynamically-scheduled context: when no 
micro-architectural events occur, the longest dataflow chain will 
be critical, but cache misses and branch mispredictions can 
elongate otherwise short dataflow chains, making them critical. 
In general, execution in a dynamic machine comprises a number 
of potentially-critical paths, their interplay being determined by 
events at runtime. 

 Though other studies have acknowledged the complexity of 
such interactions, Fields et al. were the first to tackle them 
directly and to characterize them precisely. The critical path 
prediction defines criticality is a function of a program’s 
dynamic dataflow patterns and their interaction with the 
underlying micro-architecture. Our work focuses on this 
approach. Based on the critical paths and critical nodes, we 
further present the idea of Critical Trace Length. 
5.2 Critical Paths and Critical Nodes 

According to the research proposed by Brian Fields and Ras 
Bodikm, dependence graph model (shown in Figure 2) divide an 
instruction into several parts corresponding to the different stages 
that an instruction goes through in a processor pipeline. The 
dependence graph model is determined by how many and what 
stages are chosen in this division. For our purposes, the most 
basic model was used, which divides an instruction into three 
(entry into the out-of-order window (dispatch), execution at a 
functional unit (execute), and exit from the out-of-order window 
(commit)). Each part is then considered as a node in a graph; so 
each instruction consists of three nodes and a program is a graph 
with number of nodes equal to three times the number of 
instructions executed. Dependencies exist between different 
nodes. For instance, obviously all the commit nodes of the 
instructions will depend on the execute nodes of the same 
instructions, and the execute nodes will depend on the decode 
nodes. All the decode nodes and commit nodes will depend on 
the previous ones if we issue in order and have a reorder buffer. 
Furthermore, if there are data dependencies between the 
instructions, a decode node or a execute node may depend on a 
previous execute node.  

With the dependency graph constructed, we can determine 
whether or not an edge is critical. An edge is defined to be non-
critical if the overall run time stays the same while we reduce the 
weight on that edge. An edge is defined to be critical if it is not a 
non-critical edge. The critical path of a program is formed by 
following the edges that are critical. 

A node is defined to be critical if it is part of the critical path. 
This notation is useful because we can use the technique of token 
passing along last arriving edges proposed in [1] to try to 
estimate the critical path. Obviously, an edge is not part of the 
critical path if it is not the last arriving edge of a node; we can 
decrease the weight of such edges and there would not be any 
performance gain because the node still has to stall until the last 
edge arrives. If we trace through all the last-arriving edges, we 
form an estimate of the actual critical path. Of course, this path 
may not be entirely correct, but this is a simple way to 
approximate the critical path. The estimation using last arriving 
edges can be relatively easily computed by hardware. 

It is notion that branch mispredictions do not occur in 
isolation; they interact with other miss events. The penalty for a 
particular branch misprediction often depends on the preceding 
miss event. So whether the branch instruction is in critical path is 
the important parameter. If the branch instruction is in critical 
path, processor would fork the instructions following the branch 
instruction. Conversely, even if a non-critical branch is forked 
performance cannot be improved. For example, if the 
mispredicted branch is not fed by the long D-cache miss that the 
mispredicted branch immediately follows, and in this case the 
misprediction penalty is hidden under the long D-cache miss 
penalty  that usually much larger than misprediction penalty. 

5.3 Critical Trace Lengths 

More critical-nodes after a branch mean more room for 
exploiting. So we tend to fork a second path that has more 
critical-nodes. The total number of critical node after a branch is 
defined as critical trace length. Figure 3 shows the average 
critical trace lengths for the SPECint 2000 benchmarks―details 
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regarding the experimental setup are given in section 7. Based on 
the idea of criticality, the longer critical trace length has more 
room for exploiting. A long critical trace means that we could 
potentially speed up the program more by caching the 
instructions that are critical. Depending on how many 
instructions we store in our cache, it is possible to remove all the 
latency of the front-end pipeline for each instruction in the cache. 
Unfortunately it seems that many of the benchmarks exhibit 
extremely poor variance. So we still need to add threshold for 
filter of STC. The threshold value is measurable standard of 
critical degree. If the critical trace length is larger than the 
threshold value, it means the critical trace is sufficiently 
important to need to be saved in STC. In contrary, the critical 
trace cannot be saved in STC due to lacking criticality. 
Introducing the critical trace lengths can ensure the usage of STC. 

5.4 Computing Critical Trace Lengths 

 Using the lengths of critical trace in any structure in an actual 
microprocessor would require an efficient hardware structure to 
compute the lengths of these chains. A first requirement is that 
the base architecture must include a criticality predictor, such as 
the one described in [9] based on token passing along last-
arriving edges.  

Once the criticality for each node can be predicted, there is a 
counter for each branch, at most one counter per Reorder-Buffer 
entry, which is incremented on each instruction that is critical 
nodes. The information in this counter must then be retained 
somewhere. Section 6.2 describes how we decided to retain the 
information in these counters. 

6. Misprediction Recovery Cache 
In this section, we introduce the RCM. At first, recovery trace 

is a critical trace saved in STC. RCM uses STC that is similar to 
traditional trace cache [10]. STC will be discussed in section 
6.1.The operation of RCM will be explained in section 6.2. 
Recovery policy is discussed in section 6.3. 

6.1 STC 

We propose using a small simplicity trace cache with decoded 
instructions to reduce the branch misprediction penalty. Figure 4 
shows that an STC is added into a basic out-of-order pipeline. 
Trace buffer takes input from the Decode stage of the processor 
and keeps a buffer of the current trace. This buffer stops taking 
input, and computes the critical trace length according to critical 
path prediction when it becomes full, or when its data is written 

into the trace filter. The length of critical trace is compared with 
threshold value to decide whether the critical trace is enough 
critical to be written into STC at the trace filter. The branch 
misprediction also triggers a lookup in the STC to see whether 
the recovery path of current misprediction is in the cache. If it is 
(meanwhile, it is low-confidence), then the trace is used as the 
input to the Rename stage by using distribution approach that the 
instructions are catch from the prediction path and the recovery 
path according to time interleaving. In essence, STC is a 
simplified trace cache. Most design issues of trace cache [10] 
[11] can be utilized by the STC. Two points different from a 
traditional trace cache should be paid attention: 1) Adding 
critical evaluation mechanism: STC latches instructions from 
decode stage, instead of fetch stage, and uses trace buffer that 
employs critical mechanism to compute critical trace lengths, 
and uses trace filter to catch the critical trace with enough critical. 
Benefiting from critical path analysis and recovery policy, STC 
does not need to consider complex state detection and 
management for multiple branches or other speculation 
techniques (discussed in section 6.3), so STC architecture is 
simple. 2) Adding branch confidence mechanism: the branch 
confidence mechanism prevents the high-confidence recovery 
trace from entering pipeline, thus increases the ILP of front-end 
pipeline, which will be discussed in 6.3.2. 

Figure 3 Mean Critical Trace Length 

6.2 RCM Operation 

RCM allows two paths of branch entering the pipeline (rename 
stage and instruction window) simultaneously. But the 
instructions from recovery path are not executed until a 
prediction miss, and the pipeline only need to discard an invalid 
path after the branch is resolved. The issue windows cannot be 
drained because both paths following a conditional branch have 
been fetched. In essence, the approach converts control 
dependencies into data dependencies to reduce the misprediction 
penalty. If the STC is hit, and the current branch is low-
confidence, the decoded instructions from the both path would be 
renamed and dispatched simultaneous, but considering power 
and efficiency, the instructions from recovery path are not 
executed until the branch is resolved. If the prediction is correct, 
the instructions from recovery path must be discarded. 
Conversely, predicted path must be discarded, and the recovery 
path holding in issue window will be issued into execution unit. 
It is noted that the false data dependencies are introduced due to 
converting control dependencies into data dependencies.  

Figure 4 MRC Architecture
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6.3 Recovery policy 

Ideally, we would like to create the recovery path exactly at 
every branch, so that all branch mispredictions are avoided. 
Actually, three factors prevent performance improving according 
to this approach: 1) excessive instructions from recovery path 
reduce the ILP of the front-end pipeline. 2) Introducing excessive 
recovery path may make the hardware very complex and difficult 
to rename. 3) Forking the non-critical trace would not help 
performance improvement.  

The critical path mechanism discussed in section 5 is used to 
tradeoff the trace criticality to help improving the usage of RCM. 
Then, we introduce other mechanism to improve the performance 
of RCM.  
6.3.1 Branch Forking Policies 

Delayed Forked Branches (DFB) scheme is used to reduce the 
cost of hardware [7]. DFB will prevent the second branch from 
forking a new path. The idea is to save the processor current 
states when the second low confidence branch is encountered. 
After the resolution of the current forked branch, the delayed 
branch can be forked using the previously saved state. To 
simplify the mechanism, only the first low-confidence  branch 
fetched by the predicted path can be delayed. For this purpose, 
RCM also uses two Register Map Table/Free-list structures for 
the main path and other two for the alternative path, as Figure 4 
shows. Based on the branch forking policies and critical 
mechanism, RCM truncates the recovery path when it encounter 
a branch that is both low-confidence and non-critical. 
6.3.2 Branch Confidence Mechanism 

We propose to selectively use recovery path to avoid 
excessive invalid instructions entering pipeline. In reality, we 
would always like the branch prediction is correct, so we limit 
the high-confidence branches from recovery path to create the 
checkpoint and recovery path. It is noted that RMC masks the 
low-confidence branches which related recovery path has be 
catch from STC to create checkpoint because the low-confidence 
branches have created recovery path. 

A branch confidence mechanism sorts conditional branch 
predictions into low and high confidence sets based on previous 
predictability. Branch confidence mechanisms were already 
studied in depth in [12]. Here we exploit a simple effective 
confidence mechanism. The confidence mechanism consists of a 
table of resetting 4-bit counters, and is indexed by the XOR of a 
Brach PC and a global branch history register (GBHR). Correct 
predictions increment the counter and a misprediction resets the 
counter to zero. For checkpoint, a value of 15 signals high 
confidence which the remaining values signal low confidence. 
For RMC, a value of 3 signals high confidence which the 
remaining values signal low confidence. 
6.3.3 Renaming Mechanism 

RCM allows instructions from both paths to coexist in the 
Rename stage and instruction window. RCM duplicates the 
rename map table for shadowing current state, which is already 
done in some practical processor such as the MIPS R10000 using 
decoupled architecture [22]. This method stores a shadow copy 
of the register map as it exists when a conditional branch is 

predicted. Rolling back to the branch in the case of a 
misprediction involves replacing the current register map with 
the appropriate shadow map. After a forked branch is resolved, 
the register map for the incorrect path can be discarded. The 
register map for the correct path must be placed into the current 
register map for the predicted path, which is used when only one 
path is being executed. RCM also uses two register maps, one for 
each path. The reorder buffer (ROB) and the load/store queue 
structures are also duplicated. When a second path (i.e. recovery 
path) is forked, the current register map is copied into the forked 
register map. Thus, the maps used for each path are the same at 
the point of the branch fork. As instructions are renamed on each 
path, different physical registers are mapped to the instructions 
on each path, and the separate maps are used. It ensures fast state 
recovery.  

7. Experimental Results 

7.1 Simulation Methodology 

The performance numbers presented below are based on an 
extended version of the sim-outorder simulator from the 
SimpleScalar tools set 3.0 [14] that was augmented with a 
detailed model of the trace cache that includes recovery, along 
with the simulation of the proposed RCM mechanism and with a 
critical path predictor using the configuration same as research 
[9] to achieve accurate prediction rate. The structure of the traces 
within the RCM is similar to other works [10]. Based on critical 
mechanism and confidence scheme, a trace is terminated if it 
reaches the first critical branch node which low-confidence. Each 
instruction in STC takes up 8 bytes since decoding instructions 
expands them into a less dense encoding, more conducive to use 
by the processor's data path. An aggressive prediction [19] is 
used in our simulation to verify the performance of RCM. Table 
1 summarizes the base parameters of a basic processor and 
configuration of critical predictor.  

All the SPEC CPU2000 integer benchmarks were used. All 
SPEC applications use the reference inputs. In order to reduce 
simulation time, we used the Simpoint [16] to choose 
representative samples of over 300 million instructions [17]. We 
compiled the SPECint CPU2000 benchmarks for the Alpha 
21264/Unix using SPEC Peak compiler and link. 

7.2 STC Design Space Exploration 

Table 1 Configuration of the simulation 
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This section explores the design space of the STC. The basic 
STC is that the number of trace entry is 16, and trace length is 
specified to 32. The total size of STC is 4KB. The trace 
replacement uses Least Recently Used (LRU). We attempt to 
systematically vary the design search space for design via a 
series of experiments and analyses. We simulated the trace cache 
by reducing the branch misprediction penalty linearly with the 
number of critical trace length, so we only focus on some 
parameter of STC that is major effect for performance 
improvement: including of cache size, critical trace length and 
trace utilization. 
7.2.1 Cache Size  

To further increase the performance, the size of STC has to be 
increased. There are two ways to increase the size of STC. One 
is Increasing Trace Length (ITL). The other is Increasing Trace 
Entry (ITE). 

ITL means that more instructions can be recovered after a 
misprediction. Figure 5 shows the improvement of the IPC with 
different trace length (For example, B32 means there are 32 
instructions in a recovery trace). Observing Figure 5, trace length 
increases after certain degree, the performance enhancement 
becomes slow. This is because that the overlengthy recovery 

path is very rare. The recovery path can be truncated by the 
critical branch with low-confidence.  

Otherwise, ITE means how many recovery paths can be 
written into the STC. Figure 6 shows the improvement of the IPC 
with the different trace sets (16sets means 16 trace entries can be 
kept in STC). In the same condition, the ITL more easily lead to 
waste of cache size than the ITE. But more the number of trace 
need more tag bit, practical performance comparison of the two 
methods are shown in Figure 7. By comparing the two 
performance index of STC (including speedup, and effective rate 
of recovery path), we can find that the ITL is better than the ITE 
on each index. 

Figure 5 The improvement of the 
IPC with the different trace 

7.2.2 Critical Trace Length 
Improving the usage of STC is a major purpose of our research, 

and the threshold value is the key factor for the performance of 
STC. The Threshold Value (TV) of trace filter determines 
whether the recovery path has enough criticality to be kept into 
STC. Commonly, long critical trace is better since there is more 
room for exploiting. The performance improvement from 
decreasing critical path latencies is much larger than from 
decreasing non-critical latencies. Any non-critical instructions 
may not benefit from early scheduler. On the other hand, 
excessive TV is also not appropriate. The trace paths are 
excessively limited by large threshold because the trace length 
must larger than TV. Figure 8 shows the performance using the 
various thresholds for per trace length. It is very obvious that the 
IPC cannot be improved if the trace length smaller than TV, and 
achieves the best performance near where the trace length is 2 
times of TV. Then, the performance is diminished because the 
low-critical paths are imported.  

Figure 6 The improvement of the IPC 
with the different trace entries

7.2.3 Trace Utilization Rate 
The Trace Utilization Rate (TUR) is defined to be the number 

of times the system finds the trace in the trace cache per a trace 
build. It is note this definition does not require that the traces are 
unique; i.e., if a trace is replaced and built again, we count it as 
two different traces. Also, the length of the trace does not affect 
the utilization of the trace. In figure 9 the trace utilization 
breakdown is presented for 8-entries traces and 16-traces trace 
caches respectively. In both configurations the majority of traces 
that are written into the trace cache are not used prior their 
eviction from it (TUR=0). Moreover, only 10% of the writes 
results with more than 2 hits (TUR>2) for the 8-traces trace 
cache and 20% for the 16-traces trace cache. We propose the 
STC that a trace can contain up to 32 instructions, 16 entries can 

Figure 7 Comparing the performance of 
ITL and ITE

Figure 8 Various Threshold Value for per 
trace length of IPC improvement 
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Figure 9 Trace utilization rate breakdown 
for a 8-entries trace cache and 16-entries 

trace cache 
be access, and the threshold value is 16. The total trace size is 
4KB, which achieve a high performance with small cache size. Figure 11 Breakdown of instruction 

critical for low-confidence prediction7.3 RCM Performance 

Figure 10 shows the IPC obtained by RCM for per 
benchmarks as well as the harmonic mean. Four different 
experiments performed are: 

1) Using the retirement map table (RMAP) [18], the 
traditional state-reconstructing method. 

2) Dual Path Instructions Processing (DPIP) [20]. Based on 
the table 1, we model the DPIP. At the same time, we have made 
the corresponding expansion for each stage of SimpleScalar 
pipeline in order to implement double program paths 
simultaneously. 

3) RCM our proposed recovery mechanism. 
4) IN_TRACE (INFINITE TRACE), in which a trace is made 

for every branch instruction, and assumes infinite resource. 
As can be seen from Figure 10, RCM outperforms the other 

recovery mechanism arcs all benchmarks. RCM perform nearly 
as well as IN_TRACE.  

The performance improvement compared with traditional 
processor comes from reducing the frond-end re-fill and flush 
latency. Comparing with the DPIP, The major contribution is 
that RCM prevent the instructions from non-critical path from 
entering the pipeline. Instead of forking the branch that is low-
confidence, RCM only allows the branch that is low-confidence 
and enough critical can be forked a second path. Especially, 
miss-hit for fetching an alternative path (that actually is not 
critical) from the instruction cache, the penalty is horrible.  In 
additional, the decoded instructions from the STC also implicitly 
reduce the burden of fetch stage that is just big bottleneck for 
modern processor. In all, average IPC improvement achieves 
10.7% on RCM compared with a conventional processor without 
RCM, and 4.6% improvement for DPIP. 

7.4 Performance analysis  

RCM over dual path mechanism can achieve high 
performance by preventing forked low-confidence prediction 
without enough criticality. Here, we also model the same critical 
predictor for DPIP to evaluate proportion of low-confidence 
prediction without enough critical in Figure 11. The figure shows 
the breakdown of instruction critical length for low-confidence 
prediction. Forking an alternative path on non-critical path or the 
critical path with its length less than TV can degrade 
performance even if the low-confidence prediction achieves 
success. 

7.5 Instruction Window Size 

This section studies the performance variation of the three 
approaches (the IN_TRACE model is removed) when the 
instruction window size and the reorder buffer size increase. 
Figure 12 shows the harmonic mean IPC when the instruction 
window size varies from 32 to 256. To focus the performance 
study on the RCM exclusively, the physical register file size is 
kept idealized in this group of experiments. As shown in Figure 
12, all three models obtain performance improvement due to an 
increased instruction window size. However, the strides of the 
improvement are not equal. As can be seen, the performance gap 
between DPIP and RCM becomes larger as instruction window 
size increases. It is because that the ROB size is also the resource 
arbitration of the critical path predictor that is more exact 
following the ROB size increasing. 

7.6 Effects of Pipeline Depth 

Finally, we evaluated the effect of pipeline depth on the 

Figure 10 Comparison of four models 
performance 

Figure 13 Average IPC for different 
pipeline depth 
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performance of the each model. Figure 13 shows the average IPC 
for total pipeline of 6, 14, 20 stages. We can also see the strides 
of the improvement are not equal. For 6 stages, RCM obtains an 
average improvement of 9.8% over RMAP, but for 20 stages the 
obtained improvement are 26%. It is because the pipeline re-fill 

en.  Further, the RCM uses the decoded 
se the ILP of fetch stage and decode stage. 

the 
misprediction penalt e IPC improvement 
ac
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8. Conclusions 
We proposed a recovery critical misprediction mechanism. It 

can reduce the latency of branch misprediction by hiding the re-
fill penalty, reducing the burden of fetch process, and preventing 
the non-critical alternative instruction from entering pipeline by 
using critical path prediction. Different from previous double 
path methods, RCM need not to double the port to fetch 
alternative path (instead by rename stage that it is not 
performance bottleneck for data path), so reduce the complexity 
of hardware to achieve a higher frequency. The STC is a small 
simplicity cache (total size is 2KB/4KB). For some practical 
processor (32 KB L1 I-cache for MIPS R10000 [4] and 64KB L1 
I-cache for Alpha 21264 [5]), the size of STC is satisfied. STC 
with small size increases the performance of processors, and the 
architecture of STC is greatly simplified comparing with    
common trace cache. According to our simulation results, RCM 
achieves a performance improvement by reducing 

y. Using RCM, averag
hieves 10.7% up over the traditional recovery mechanism. 
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