
An algebraic specification of message passing programming languages

Masaki Nakamura1 Alaa Ismail El-Nashar2 Kokichi Futatsugi3

1. Introduction
In this paper, we deal with parallel programming

with message passing interface, where each process
communicates with each other via functions which send
and receive data between the processes. We describe a
rewriting logic specification of a simplified parallel pro-
gramming language supporting message passing func-
tions in the algebraic specification language Maude [1]
4. The parallel programming language we specify can
be considered as a subset of Message Passing Interface
(MPI) [11] 5, which is a message passing library inter-
face specification. We show that both indeterminacy
and deadlocks which may arise in parallel programs
can be detected by using Maude system.

2. Maude in nutshell
A Maude specification consists of modules. Func-

tional modules are used for describing abstract data
types based on equations, and system modules are used
for describing systems based on rewriting logic.

The following is an example of Maude functional
modules:

fmod VAR is
sort Var .
ops a b c d e f g h i j k l m n o p q r

s t u v w x y z pid np : -> Var .
endfm

Functional modules begin with fmod and end with
endfm. The name of the above module is VAR. Sorts
are declared after sort. The module VAR has the sort
Var. By ops (or op), we can declare operation sym-
bols. In VAR, operation symbols a, b, . . . pid, np are
declared. The rank of the operation symbol is, in gen-
eral, given like S1 S2 · · · Sn−1 -> Sn, where each Si is
a sort. The operation symbol takes terms whose sorts
are S1 S2 · · · Sn−1 and forms a term of the sort Sn.
The rank of the operation symbols in VAR are all ->
Var, which means that those do not take any argument
and form terms of Var by themselves. Such empty-
argument operation symbols (or terms) are called con-
stants.
2.1 Buitl-in modules

Maude supports built-in modules of fundamental
data types, like Boolean, integers, strings, and so on.
The built-in module BOOL is a special built-in mod-
ule, which is imported by all user-defined modules im-
plicitly. The built-in module BOOL has the sort Bool,
the constants true and false of the sort Bool, and
special polymorphic operation symbols: the equality
predicates == and =/= , and the operation symbol
if then else fi. Underlines indicate the position of
arguments in term expression. The equality predicates
== and =/= are used for checking terms t1 and t2
are equal or not. The term t1 == t2 is reduced into
true if they are equal, otherwise false. t1 =/= t2 is

1Kanazawa University
2Minia University, Egypt
3Japan Advanced Institute of Science and Technology
4The Maude System, URL: http://maude.cs.uiuc.edu/
5MPI Forum : http://www.mpi-forum.org/

the negation of t1 == t2. The term if c then t1 else t2
fi is reduced into t1 if c is true, otherwise t2. Except
above special operation symbols, BOOL has fundamen-
tal Boolean operation symbols and , not , and so on.
The following is the built-in module BOOL:

fmod BOOL is
protecting TRUTH .
op _and_ : Bool Bool -> Bool

[assoc comm prec 55] .
...
vars A B C : Bool .
eq true and A = A .
eq false and A = false .
eq A and A = A .
...

endfm

We omit some parts of specifications by the dots
(...). In this case, we omit the declarations of opera-
tion symbols and their related equations of or , not ,
etc. The declaration protecting M means that the
module imports M with the protect mode. In TRUTH,
the sort Bool, the constant true and false, the equal-
ity predicates and if then else fi mentioned above
are defined. If M ′ imports M , the contents of M are in-
cluded in M ′. The rank of the operation symbol and
is Bool Bool -> Bool, which means that for terms t1
and t2 of Bool, t1 and t2 is also a term of Bool. In
the square brackets, attributes of the operation symbol
are declared. The attribute assoc means that and is
associative, i.e. (t1 and t2) and t3 = t1 and (t2 and t3).
We can avoid brackets and write t1 and t2 and t3 with-
out any ambiguous parsing. The attribute comm means
that and is commutative, i.e. t1 and t2 = t2 and
t1. The attribute prec n means that the precedence
is n. Lesser precedences indicate stronger connectivity
in term expressions. For example, the precedences of
and , or and not in BOOL are 55, 59 and 53 respec-
tively. For example, the term not true and false
parses as (not true) and false, and is equivalent to
false. Equations are declared with eq. The first equa-
tion means that the term true and t is equivalent to
t for each term t of Bool. The second equation means
that the term false and t is equivalent to false for
each term t of Bool. The last equation means that the
term t and t is equivalent to t for each term t of Bool.
The operation symbol and denotes a function satis-
fying those equations, that is, the logical conjunction.

We use another built-in module INT, which includes
the sort Int and the constants . . . , -2, -1, 0, 1, 2,
. . ., and the operation symbols + , * , > , . . .. The
following is an extension of INT by adding the constant
na:

fmod INTex is
extending INT .
op na : -> Int .

endfm

In INTex, INT is imported with the extending mode,
which allows us to add new elements. The constant
na is an element of Int which is not equivalent to any
integer.

85

RB-003

FIT2009（第8回情報科学技術フォーラム）

（第1分冊）



3. Syntax of PPL
In this paper, we specify a simple parallel program-

ming language which supports some message passing
functions. We call it PPL. In this section, we give a
syntax of PPL: expressions and programs.
3.1 Expressions

PPL supports only the integer as a primitive data
type. In the built-in module INT, we can deal with in-
teger expressions like 1 + 2 * 3 as a term of Int. In
PPL, we deal with an expression which may involve
variables, like x + 1 * y. For this purpose, we de-
scribe the following specification EXP of the syntax of
PPL expressions:

fmod EXP is
protecting VAR .
protecting INTex .
sorts Exp .
subsort Var Int < Exp .
ops (_+_) (_*_) (_-_) (_=_) (_>_) (_and_)

(_or_): Exp Exp -> Exp [ditto] .
op not _ : Exp -> Exp .

endfm

An order on sorts are declared as subsort Var Int
< Exp, which means that terms of either Var or Int
are also terms of the sort Exp. For example, The term
x of Var and the term 1 + 2 * 3 of Int are also the
term of Exp. Operation symbols in INT and BOOL are
declared in the module EXP again, but they are defined
on the sort Exp. The attribute ditto means that if
imported modules include the operation symbol whose
name is same, the new one inherits the attribute from
the previous one. Maude allows overriding of operation
symbols. Thus, terms containing variables and integers
can be terms of Exp. For example, x + 1 * y and x >
1 and y > 3 are terms of Exp. Note that the integer 0
is used as false and non-zero integers are used as true
in PPL.
3.2 Programs

A program of PPL is a sequence of variable decla-
rations, assignments, conditionals, and iterations. The
specification Pgm of the syntax of PPL programs is
given as follows:

fmod PGM is
protecting EXP .
sorts BPgm Pgm .
subsort BPgm < Pgm .
op int_; : Var -> BPgm
op _:=_; : Var Exp -> BPgm [prec 38] .
op if_{_} : Exp Pgm -> BPgm
op while_{_} : Exp Pgm -> BPgm
op __ : Pgm Pgm -> Pgm [assoc prec 41] .
op end : -> Pgm .

endfm

First four operation symbols are constructors of basic
programs (BPgm): variable declarations, assignments,
conditionals and iterations. A variable declaration of x
is represented by the term int x ; of Pgm. The term
x := y + 1 ; represents the assignment which assigns
the value of y + 1 to x. The term if x > 1 {x := 0
;} represents the conditional whose condition is x >
1 and body statement is x := 0 ;. The term while
x > 1 {x := x - 1 ;} represents the iteration whose
condition is x > 1 and body statement is x := x - 1
;.

The operations symbol is a constructor of pro-
grams. The operations symbol just indicates posi-
tions of arguments. Because of the attribute assoc, a
sequence of basic programs can be treated as a pro-
gram, like BP1 BP2 BP3. The constant end is used
for the marker of the end of programs. The follow-
ing is an example of PPL programs, which computes∑1000

n=1 n:
int i ; int x ;
x := 0 ; i := 1000 ;
while i > 0 {

x := x + i ;
i := i - 1 ;

}

Note that the Maude system can treat the above PPL
program directly as a term of Pgm without any trans-
formation.

PPL supports message passing between processes.
Each process can send a message to another process.
The following is the syntax of message passing in PPL:
fmod PPGM is
protecting PGM .
op send(_,_); : Var Exp -> BPgm .
op recv(_,_); : Var Exp -> BPgm .
op any : -> Exp .

endfm

The program send(X,E); tries to send the mes-
sage X (the value of the variable X) to the process
whose ID is equivalent to (the value of) the expression
E. The program recv(X,E); tries to receive the mes-
sage from the process E and assign the message to the
variable X. The expression any is used for an arbitrary
process.

4. Semantics of PPL
In this section, we give semantics of PPL. The se-

mantics is based on the notion of stores, which is a
model of storage.
4.1 Store

A store is given as a set of pairs of variables and
values associated them. A store represents a state (or
a snapshot) of storage in program running. The module
STORE is given as follow:
fmod STORE is
protecting EXP .
sort Store .
op _::_ : Var Int -> Store .
op init : -> Store .
op __ : Store Store -> Store

[assoc comm id: init] .
...

endfm

The pair of a variable X and an integer I is denoted
by the term (X::I). The constant init denotes the
initial empty store. From the attributes assoc and
comm, a sequence of pairs can be treated as a (multi)
set of pairs, e.g. (P1 P2 P3) = (P3 P2 P1). The
operation attribute id: init means that init is an
identity element, i.e. (P init) = P .

The module STORE includes the following opera-
tion symbols (in the omitted part): in?(X,S) checks
whether the variable X is included in the store S or
not. val(X,S) returns the value associated to X in S.
update(X,I,S) updates the value associated to X to
the integer I. For example, the equation eq update(X,
I, ((X :: J) S)) = (X :: I) S is included in STORE.

86

FIT2009（第8回情報科学技術フォーラム）

（第1分冊）



4.2 Expressions
The value of an expression is determined by the cur-

rent store. For example, the value of the expression x
+ y is 3 when the store is (x :: 1) (y :: 2), and is -1
when the store is (x :: 1) (y :: -2). The value of the
expression E on the store S is denoted by S[E]. The
semantics of the expressions is given by the following
module SEM-EXP:

fmod SEM-EXP is
protecting EXP .
protecting STORE .
op _[_] : Store Exp -> Int .
vars A B C : Var .
vars I J K : Int .
vars E E1 E2 : Exp .
var S : Store .
eq S[A] = if in?(A, S) then val(A, S)

else na fi .
eq S[I] = I .
eq S[E1 + E2] = (S[E1]) + (S[E2]) .
...
eq (S[E1 = E2]) = (if (S[E1] == S[E2])

then 1 else 0 fi) .
...

endfm

The equations define the value S[E] inductively on
the structure of expressions E. The first equation eq
S[A] = if in?(A, S) then val(A, S) else na fi means
that for a variable X, S[X] is defined as the value as-
sociated to X in the store S if S includes X, otherwise
the special value na. The second equation S[I] = I
means that the value of an integer (as an expression) is
the integer itself. The third equation defines the value
of the expression E1 + E2 by the values of each ar-
guments E1 and E2. Note that the operation symbol
+ in the left-hand side S[E1 + E2] is a constructor of
expressions declared in EXP, and the operation symbol
+ in the right-hand side (S[E1]) + (S[E2]) is an op-
eration symbol declared in INT. For example, S[1 * x
+ y] is equivalent to 1 * S[x] + S[y].
4.3 Programs

Semantics of PPL programs are given by a Maude
system module, which specifies a rewrite system mod-
ulo equations, In a system module, we can declare
rewrite rules: crl L => R if C. A term T is rewrit-
ten into T ′ (module equations) if there exists a rewrite
rule such that T has an instance L′ of the left-hand
side L and the corresponding instance of the condition
part C is equivalent to true, then, T ′ is obtained by
replacing the instance subterm L′ with the correspond-
ing instance R′ of the right-hand side R. The condition
part can be omitted like rl L => R.

Programs modify stores. For example, for the store
(x :: 1) (y :: 2), the store modified by the program
x := x + y ; should be (x :: 3) (y :: 2). The store
obtained by applying the program P to the store S is
denoted by S P . A sequence of basic programs BP1
BP2 · · · BPn modifies a store S0 as follows:

S0 BP1 BP2 · · · BPn end ⇒ S1 BP2 · · · BPn end
⇒ · · ·
⇒ Sn−1 BPn end
⇒ Sn end
⇒ Sn

where each Si is the store obtained by applying the
basic program BPi to the store Si−1. Semantics of

PPL programs (without message passing) is given by
the following module SEM-PGM:

mod SEM-PGM is
protecting SEM-EXP .
protecting PGM .
sort State .
subsort Store < State .
op __ : State Pgm -> State [ctor] .
vars BP BP2 : BPgm . ...
rl S end => S .
crl S (int A ;) => (A :: na) S

if not in?(A,S) .
crl S A := E ; => update(A,S[E],S)

if in?(A, S) .
crl S if(E){P1} => S P1 if S[E] =/= 0 .
crl S if(E){P1} => S if S[E] == 0 .
crl S (while E {P}) => S (P while E {P})

if S[E] =/= 0 .
crl S (while E {P}) => S

if S[E] == 0 .
rl S (BP P) => (S BP) P .
eq (S (BP P1)) P2 = (S BP) (P1 P2) .

endm

The first rewrite rule means that if the program reaches
the end then the current store is returned as the final
store.

Variable declarations The second rewrite rule de-
fines variable declarations. The variable declaration
int A ; updates the store S when the variable A is not
included in S, i.e. not in?(A,S) is true. The updated
store is S (X :: na) where na is the special integer
constant denoting ”not available”.

Assignments The third rewrite rule defines assign-
ments. The assignment A := E ; updates S when A is
included in S. In the updated store, the value associ-
ated to A is the value S[E] of the expression E in the
previous store S.

Conditionals The fourth and fifth rewrite rules de-
fine conditionals. The store obtained by applying the
conditional if(X){P} to S is S P if the condition part
holds, i.e. S[T] is true, otherwise, it is S.

The last equation is needed for the case that the
sequence of basic programs in the body part of a con-
ditional (or an iteration) is applied to the store. For
such cases, only the top of the sequence is applied to
the store, like S if(E){BP P1} P2 => (S (BP P1)) P2 =
(S BP) (P1 P2).

Iterations The sixth and seventh rewrite rules de-
fine iterations. The iteration while(T){P} applies P
repeatedly until the condition part does not hold, i.e.
S[T] == 0.

Sequences The last rewrite rule defines a sequence of
basic programs. The top of basic programs is consumed
first.
4.4 Execution

Maude specifications are executable. For a given
system module, the Maude rewrite command rewrite
takes a term and returns a term obtained by apply-
ing rewrite rules repeatedly until no rewrite rule can

87

FIT2009（第8回情報科学技術フォーラム）

（第1分冊）



be applied to. A term which no rewrite rules can be
applied is called a normal form. The following is an
execution result of rewriting the term which represents
the application of the PPL program shown in Section
3.2 to the initial store init:

Maude> rewrite init (
int i ; int x ;
x := 0 ; i := 1000 ;
while i > 0 {
x := x + i ;
i := i - 1 ;

}
end ) .
...
result Store: (i :: 0) x :: 500500

where Maude> is the prompt of Maude system. In the
last line, (i :: 0) (x :: 500500) is returned as
a normal form of the input term. As we expected,∑1000

n=1 n = 500500 is associated to x.
4.5 Stores for parallel computing

Since plural processes run in parallel computing, a
store should be assigned to each process. A set of stores
represents a state of parallel computing in our model.
The module PSTORE is given as follow:

fmod PSTORE is
protecting STORE .
sort PState .
subsort State < PState .
op nil : -> PState .
op _|_ : PState PState -> PState

[assoc comm prec 99] .
endfm

For example, when we run a program with three pro-
cesses, a state (a snapshot) is represented by the term
of the sort PState like

(pid :: 0) (np :: 3) (x :: 12) P0

| (pid :: 1) (np :: 3) (x :: 3) (y :: 1) P1

| (pid :: 2) (np :: 3) (y :: 2) (z :: 1) P2

where pid and np are reserved variables (in PPL) rep-
resenting a process ID and the number of all processes
respectively, which we declared in VAR. Pi is the re-
maining program to be executed in the process i.
4.6 Message passing

The semantics of message passing functions send
and recv is given by the following system module
SEM-PPGM:

mod SEM-PPGM is
protecting PPGM . protecting PSTORE .
inc SEM-PGM .
vars S1 S2 : Store . vars P1 P2 : Pgm .
var L : PState . vars Dest Source : Exp .
vars X1 X2 : Var .

crl ((S1 send(X1, Dest);) P1)
| ((S2 recv(X2, Source);) P2)

=> (S1 P1)
| (update(X2, S1[X1], S2) P2)

if
S1[Dest] == S2[pid]
and S1[pid] == S2[Source] .

crl ((S1 send(X1, Dest);) P1)

| ((S2 recv(X2, any);) P2)
=> (S1 P1)
| (update(X2, S1[X1], S2) P2)

if
S1[Dest] == S2[pid] .

endm

The first rewrite rule defines message passing with
the functions send(X1,Dest); in a process and
recv(X2,Source); in another process. The condition
of the rewrite rule is that the destination of the send
function (S1[Dest]) is equivalent to the process which
tries to receive a message (S2[pid]) and the process
which tries to send a message (S1[pid]) is equivalent
to the source of the recv function (S2[Source]). If
there exist functions send and recv which satisfy the
condition, then both functions are consumed and the
value associated to X2 in the receiving process’s store
is updated by the value associated to X1 in the sending
process’s store.

The sending function specified in PPL corresponds
to the synchronous sending function MPI Ssend in MPI,
where the process sending a message should stop un-
til the target process calls a matching receiving. The
second rewrite rule also defines message passing with
send and recv functions. The source of the receive
function is set for an arbitrary source (any), and thus
the message from any process can be received by
recv(X2,any);.
4.7 Initialization

For a given program P and a given natural number
n which stands for the number of processes, we define
the initial state as follows: (pid :: 0) (np :: n) P
| (pid :: 1) (np :: n) P | · · · | (pid :: n − 1)
(np :: n) P . The following is the specification of the
initialization of PPL:

mod PPL is
inc SEM-PPGM .
op run : Int Pgm -> PState .
op run’ : Int Pgm Int -> PState .
vars I J : Int .
var P : Pgm .
eq run(I, P) = run’(I, P end, I) .
ceq run’(I,P,J) = nil if J < 1 .
eq run’(I,P,1) = ((pid :: 0) (np :: I)) P .
ceq run’(I,P,J) = ((pid :: J-1) (np :: I)) P

| run’(I, P, J - 1)
if J > 1 .

endm

We show two execution results of parallel programs
with message passing:

Maude> rewrite
run(5,
if(not(pid = 0)){
send(pid,0);

}
if(pid = 0){
int x ; int y ; int i ;
y := 1 ;
i := np ;

while (i > 1) {
i := i - 1 ;
recv(x,i) ;
y := x * y ;

}
}

88

FIT2009（第8回情報科学技術フォーラム）

（第1分冊）



) .
...
result PState:
(pid :: 1) np :: 5 | (pid :: 2) np :: 5

| (pid :: 3) np :: 5 | (pid :: 4) np :: 5
| (i :: 1) (x :: 1) (y :: 24)
(pid :: 0) np :: 5

In the first example, the input program can be seen
from the third line to fifteenth line (if(not(pid =
0)) ... y := x * y ;}}). The input program con-
sists of two blocks separated by the value of pid. The
first half is for the processor whose pid is not zero
and the latter half is for the process 0. In the first
half, each process tries to send its ID to the pro-
cess 0 (send(pid,0);). In the last half, for each
i ∈ {1, . . . , np − 1}, the process 0 tries to receive the
message x from the process i (recv(x,i);), and mul-
tiplies y by x when the receive succeeds (y := y * x
;), where np is the number of processes and the initial
value of y is 1. Note that messages are received in order
of decreasing process ID number.

In this execution, there are five processes to run the
program in parallel (run(5,...). The result (a normal
form) can be seen in the last four lines. For readability,
we modified the real output of Maude system by editing
line breaks. In the above normal form, we can see that
the final store of the process 0 is (y :: 24) (x :: 1)
(i :: 1) (pid :: 0) (np :: 5). The value of the
variable y is 24 (= 4 × 3 × 2 × 1) as we expected. The
value of x is 1 since the messages have been received in
decreasing order.

The following is the second execution result, where
the input program is same as above except the source
of the receiving function:

Maude> rewrite
run(5,
if(not(pid = 0)){
send(pid,0);

}
if(pid = 0){
int x ; int y ; int i ;
y := 1 ;
i := np ;
while (i > 1) {
i := i - 1 ;
recv(x,any) ;
y := x * y ;

}
}

) .
...
result PState:
(pid :: 1) np :: 5 | (pid :: 2) np :: 5

| (pid :: 3) np :: 5 | (pid :: 4) np :: 5
| (i :: 1) (x :: 4) (y :: 24)
(pid :: 0) np :: 5

Maude> rewrite

Since the receiving function can receive the message
from any source (recv(x,any);), the order of receiving
is not fixed. Although in the former example above
younger processes should wait to send their messages
until older processes finish sending, in this example the
message sending first can be received first. Thus, the
latter one is improved in the view of running speed.
The value of y is also 24. Note that the value of x is 4,
which means that the last message has been sent from

the processor 4 unlike the case of the program without
any above.

In general, a term may have more than one subterm
which rewrite rules can be applied to, and thus more
than one normal form exist for a given term. For ex-
ample, the normal form in the former example can be
a normal form of the latter example. The rewrite com-
mand just returns one of the all possible normal forms.

5. Verification
One of the most important features of Maude sys-

tem modules is that we can search all possible normal
forms automatically. The following is the instruction
of searching all normal forms of a given term t:

search t =>! pattern such that condition .

where pattern is a term which may have fresh variables
and condition is a term of Bool which may involve the
variables in pattern. Then, Maude system searches all
normal forms which are instances of pattern and satisfy
condition. The condition part can be omitted.
5.1 Indetermination

Since the execution result showed in Section 4.7 (the
latter one) just shows one of the possible normal form
of the input program, it does not guarantee that the
value of the variable y always becomes 24. In order
to verify that the value of y is always 24, we check
all possible normal forms by the search command as
follows:

Maude> search
run(5,
...

)
=>!
((pid :: 0) (y :: Y:Int) S:Store | L:PState)
such that (Y:Int =/= 24) .
...
No solution.

where pattern is (pid :: 0) (y :: Y:Int) S:Store
| L:PState and condition is Y:Int =/= 24. The ex-
pression x:s is the variable x of the sort s. Y, S and L
are fresh variables of the sort Int, Store and PState
respectively. Therefore, the above execution tries to
search a normal form whose value of the variable y
in the process 0 is not 24. Maude system returns no
solution (in the last line), which means that there are
no such normal forms, that is, the value of y in the
process 0 is guaranteed to be 24 in the final state of
any possible parallel running.

Consider the program obtained by replacing the as-
signment y := y * x ; with y := x - y ;. The following
is an execution result of the modified program:

rewrite run(5, ...
recv(x,any) ;
y := x - y ;
... ) .

...
result PState:
(pid :: 1) np :: 5 | (pid :: 2) np :: 5

| (pid :: 3) np :: 5 | (pid :: 4) np :: 5
| (i :: 1) (x :: 4) (y :: 3)
(pid :: 0) np :: 5

The value of y in the process 0 is 3 (= 4 − (3 − (2 −
(1 − 1)))).

89

FIT2009（第8回情報科学技術フォーラム）

（第1分冊）



Next, similar to the above search, we try to check
whether the value of y in the process 0 is 3 in all normal
forms or not.

search run(5, ...
recv(x,any) ;
y := x - y ;
...)

=>!
((pid :: 0) ... suchThat I =/= 3 .

Then, unlike the above program with y := x * y ;,
Maude system returns ten solutions which satisfy the
pattern and the condition. We show one of those ten
solution as follows:

Solution 7 (state 67262)
...
L:PState -->
(pid :: 1) np :: 5 | (pid :: 2) np :: 5

| (pid :: 3) np :: 5 | (pid :: 4) np :: 5
S:Store --> (i :: 1) (x :: 1) np :: 5
Y:Int --> -1

where Maude system shows the instance of all variables
in the pattern. We can see that the value of y in this
solution is −1 ( = 1 − (2 − (3 − (4 − 1)))).
5.2 Deadlock

Deadlock detection is another important task in ver-
ification of parallel programming. When the processes
0 and 1 try to send messages to each other, send(x,0);
and send(y,1); should not be consumed and both pro-
cesses cannot finish the remaining programs. Detecting
such deadlocks is not easy task since the destination of
a sending function may not be an integer but a vari-
able. The value of a variable is changed while running
the program. Thus, dynamic analysis is suitable for
detecting deadlocks rather than static analysis.

Consider the following program:

if(not(pid = 0)){
int x ;
send(pid,0);
recv(x,0);

}
if(pid = 0){
int x ; int i ;
i := 1 ;
while (np > i) {
recv(x,any) ;
x := x * x ;
send(x,i) ;
i := i + 1 ;

}
}

For each i > 0, the process i tries to send its process ID
and if the sending succeeds then it receives a message
from process 0. The process 0 tries to receive a message
x from any source and then sends x2 to the process i in
order of 1, 2, . . . , np − 1. The following is the result of
applying the rewrite command to the above program
with five processes:

result PState:
(x :: 1) (pid :: 1) np :: 5

| (x :: 4) (pid :: 2) np :: 5
| (x :: 9) (pid :: 3) np :: 5
| (x :: 16) (pid :: 4) np :: 5
| (i :: 0) (x :: 16) (pid :: 0) np :: 5

From this result, we cannot find any problem of this
program. However, as we discussed above, the execu-
tion result just shows one of the possible normal forms,
and it does not guarantee that the program is deadlock-
free. To obtain deadlock-free programs, we need to
check all possible executions by the search command.
Now, we search all normal forms as follows:

search run(5,...) =>! L:PState.

Since the pattern is a single variable and there is no
condition, Maude system returns all normal forms of
the input term. We show one of those normal form as
follows:
Solution 6 (state 20479)
...
L:PState -->
(x :: 1) (pid :: 1) np :: 5

| (x :: 4) (pid :: 2) np :: 5
| ((x :: na) (pid :: 3) np :: 5)

send(pid,0); recv(x,0); if pid = 0 ... end
| ((x :: na) (pid :: 4) np :: 5)

recv(x,0); if pid = 0 ... end
| ((i :: 2) (x :: 16) (pid :: 0) np :: 5)

send(x,np - i); i := i - 1 ; ... end

Although it is a normal form, programs remain in some
processes. The processes 1 and 2 successfully consume
all programs. The process 4 waits for a message from
the process 0 (recv(x,0);), however the process 0 tries
to send a message to the process 3 ((i :: 2), (np ::
5) and send(x,np - i);). The process 3 also tries to
send a message (send(pid,0);). Then, those processes
are in deadlock.

If there is no normal form which involves remain-
ing programs in the final stores of all processes, then
the program is guaranteed to be deadlock-free since
the Maude search command checks all possible normal
forms.
5.3 Abstraction

To detect possible indetermination and/or deadlock,
we need search all normal forms exhaustively. Since
a purpose of parallel programs is to compute heavy
tasks fast, verification of parallel programs should also
be extremely heavy tasks. For speed up, we propose an
abstraction of a part of the input program. We propose
a way to introduce a function of programs in PPL as
follows:
mod FUN is
inc PPL .
op funi : Int -> Int .
op funp(_); : Var -> BPgm .
var S : Store .
var X : Var .
rl (S (funp(X);))

=> ((X :: funi(S[X])) S) .
endm

where the operation symbol funi is an abstract func-
tion on integers. Note that no definition of funi is
included in the module. The abstract function funi
can be considered as an arbitrary function. The term
funi(n) represents the integer which the function funi
returns for n. The operation symbol funp( ); is a
program function in PPL which computes funi. The
meaning of funp( ); is described as the rewrite rule, in
which when the function funp(X); is called, the value
of the variable X is updated by funi(S[X]). We show
an execution result:

90

FIT2009（第8回情報科学技術フォーラム）

（第1分冊）



Maude> rewrite
run(5,
if(not(pid = 0)){
funp(pid);
send(pid,0);

}
if(pid = 0){
int x ; int y ; int i ;
y := 1 ;
i := np ;
while (i > 1) {
i := i - 1 ;
recv(x,any) ;
y := x * y ;

}
}

) .
...
result PState:
(pid :: funi(1)) np :: 5

| (pid :: funi(2)) np :: 5
| (pid :: funi(3)) np :: 5
| (pid :: funi(4)) np :: 5
| (i :: 1) (x :: funi(4))
(y :: 1 * funi(1) * funi(2) * funi(3)

* funi(4))
(pid :: 0) np :: 5

In the input program, each process except 0 calls the
function funp(pid); and send the value of pid to the
process 0. The process 0 computes the multiplication of
all received messages. Note that the value 1 * funi(1)
* funi(2) * funi(3) * funi(4) of y includes values
returned by funi.

We can verify indetermination of the value of y in the
process 0 although there is no definition of the function
funi.

Maude> search
run(5,...)
=>!
((pid :: 0) (y :: Y:Int) S:Store | L:PState)
such that (Y:Int =/=
1 * funi(1) * funi(2) * funi(3) * funi(4)) .
...
No solution.

Maude system returns no solution, which means that
in all normal forms, the values of y in the process 0 are
equivalent. The reason why the verification succeeded
is because the operation symbol * is declared as an
associative and commutative operation symbol.

Consider the program obtained by replacing the as-
signment y := x * y ; with y := x - y ;. Then, the
value of y in the process 0 is funi(4) - (funi(3) -
(funi(2) - (funi(1) - 1))). Consider the following
search:

Maude> search
run(5,...)
=>!
((pid :: 0) (y :: Y:Int) S:Store | L:PState)
such that
(Y:Int =/= funi(4) -
(funi(3) - (funi(2) - (funi(1) - 1)))) .

Maude system returns the twenty-three solutions.
We show one of those solutions as follows:

Solution 23 (state 149473)

...
L:PState -->
(pid :: funi(1)) np :: 5

| (pid :: funi(2)) np :: 5
| (pid :: funi(3)) np :: 5
| (pid :: funi(4)) np :: 5
S --> (i :: 1) (x :: funi(1)) np :: 5
Y:Int --> funi(1) - (funi(2) - (funi(3)

- (funi(4) - 1)))

Unfortunately, the result does not directly mean
that the program is indeterminate with respect to the
value of y since it depends on the definition of the
function funi. For example, if funi is defined as
funi(n) = 0 for all n, then funi(4) - (funi(3) -
(funi(2) - (funi(1) - 1))) and funi(1) - (funi(2)
- (funi(3) - (funi(4) - 1))) are equivalent to 1. If
we add the equation eq funi(I) = 0 to the module
FUN, then Maude system returns no solution for the
latter search. When we use the abstract function and
some solution is returned in indeterminacy verification,
we need to check whether the solution is correct for the
function under consideration.

6. Related work
In [4], an algebraic specification of imperative pro-

grams has been proposed by using the algebraic spec-
ification language OBJ3 [5]. Maude is a successor of
OBJ3. The specification is based on a theory of stor-
age. A variety of actual storage mechanisms satisfy
it. In [9], a behavioral specification of imperative pro-
gramming languages has been proposed by using the
algebraic specification language CafeOBJ [2]. CafeOBJ
is another successor of OBJ3. In behavioral specifica-
tion terminology, the set of stores has been given as a
hidden sort, and the behavior of programs has been de-
scribed via behavioral operation symbols. Each actual
storage mechanism which satisfies the behavior can be
a model, that is, an implementation of the behavioral
specification. In this paper, we give a more concrete
model of storage in order to obtain an efficient way to
verify parallel programs by exhaustive searching. The
approaches of [4, 9] are suitable for interactive verifi-
cation with the techniques of proof scores [3, 10]. Al-
though our approach restricts a model of storage to the
set of pairs of variables and their values, simulation
is extremely faster than the approaches of [4, 9] and
moreover we obtain fully-automatic verification based
on exhaustive searching.

Our PPL can be considered as a simplification of
MPI programs. Several methods and tools to ver-
ify MPI programs have been proposed (for example,
[6, 8, 7, 12]). Because of the space constraints of this
paper, we cannot refer to all methods and tools related
to our study. Here, we refer to MPI-SPIN [12] 6 as
one of the formal verification tools for MPI programs,
which seems to be one of the most related approaches
to us. MPI-SPIN is an extension of a famous model
checker SPIN 7, and supports exhaustive searching for
all possible execution paths like the Maude search com-
mand. There are several practical case studies [13, 14].
Although in our approach, all examples in this arti-
cle are verified in seconds (on 2.66 GHz Intel Core 2
Duo, 4GB memory, MacBook Pro), those examples are
small and not so practical. In MPI-SPIN, the user need
to build a suitable model from MPI programs. In our

6URL: http://vsl.cis.udel.edu/mpi-spin/
7URL: http://spinroot.com/

91

FIT2009（第8回情報科学技術フォーラム）

（第1分冊）



study, as we showed, Maude system can deal with PPL
program codes directly without any translation into
other languages, and verification is done by manipu-
lating program codes themselves. In any step of simu-
lation and/or searching of a PPL program, a snapshot
is represented by a pair of the current stores (variables
and their values) and the remaining programs, which
makes it easier to detect a problem of an input pro-
gram, as we showed in Section 5.2. Thus, in the view
of readability of simulation and/or verification, our ap-
proach has an advantage over other model-checking ap-
proaches which needs some transformation of MPI pro-
grams in languages (or models) supported by the model
checker.

7. Conclusion
We proposed an algebraic specification of parallel

programming language PPL, which supports message
passing functions like those used in MPI programs, and
showed that it is useful to verify properties particular
to parallel programming, e.g. uniqueness of a value
in all possible normal forms and deadlock-freeness, by
using the exhaustive searching command supported by
Maude system. To reduce state and time explosion of
exhaustive searching, we proposed a way to abstract
PPL programs by using an abstract function.

Maude system supports not only exhaustive search-
ing but also LTL (linear temporal logic) model check-
ing. We can verify not only invariant (or safety) prop-
erties, which ensures that something bad never hap-
pens, but also properties which can be written in linear
temporal logic, for example, liveness properties, which
ensures that something good eventually happens, and
more complicated ones. To find case studies to show
the usefulness of applying Maude LTL model checker
to PPL is one of the future work. Our PPL supports
only synchronous send and receive functions. There
are other useful functions specified by MPI standard,
for example, broadcast and reduce functions. To ex-
tend PPL by adding those functions is another future
work.

Acknowledgment
This research has been supported by the Kayamori

Foundation of Information Science Advancement.

References
[1] Manuel Clavel, Francisco Durán, Steven Eker,

Patrick Lincoln, Narciso Mart́ı-Oliet, José
Meseguer, and Carolyn L. Talcott, editors. All
About Maude - A High-Performance Logical
Framework, How to Specify, Program and Verify
Systems in Rewriting Logic, volume 4350 of
Lecture Notes in Computer Science. Springer,
2007.

[2] Razvan Diaconescu and Kokichi Futatsugi.
CafeOBJ Report. World Scientific, 1998.

[3] Kokichi Futatsugi. Verifying specifications with
proof scores in cafeobj. In ASE, pages 3–10. IEEE
Computer Society, 2006.

[4] Joseph A. Goguen and Grant Malcolm. Algebraic
Semantics of Imperative Programs. MIT Press,
Cambridge, MA, USA, 1996.

[5] Joseph A. Goguen, T. Winkler, José Meseguer,
Kokichi Futatsugi, and Jean-Pierre Jouannaud.

Software Engineering with OBJ: Algebraic Spec-
ification in Action, chapter Introducing OBJ*.
Kluwers Academic Publishers, 2000.

[6] Bettina Krammer, Katrin Bidmon, Matthias S.
Müller, and Michael M. Resch. Marmot: An mpi
analysis and checking tool. In Gerhard R. Joubert,
Wolfgang E. Nagel, Frans J. Peters, and Wolf-
gang V. Walter, editors, PARCO, volume 13 of
Advances in Parallel Computing, pages 493–500.
Elsevier, 2003.

[7] Guodong Li, Michael Delisi, Ganesh Gopalakrish-
nan, and Robert M. Kirby. Formal specification
of the mpi-2.0 standard in tla+. In Siddhartha
Chatterjee and Michael L. Scott, editors, PPOPP,
pages 283–284. ACM, 2008.

[8] Glenn R. Luecke, Hua Chen, James Coyle, Jim
Hoekstra, Marina Kraeva, and Yan Zou. Mpi-
check: a tool for checking fortran 90 mpi pro-
grams. Concurrency and Computation: Practice
and Experience, 15(2):93–100, 2003.

[9] Masaki Nakamura, Masahiro Watanabe, and Ko-
kichi Futatsugi. A behavioral specification of im-
perative programming languages. IEICE Transac-
tions, 89-A(6):1558–1565, 2006.

[10] Kazuhiro Ogata and Kokichi Futatsugi. Some
tips on writing proof scores in the ots/cafeobj
method. In Kokichi Futatsugi, Jean-Pierre Jouan-
naud, and José Meseguer, editors, Essays Dedi-
cated to Joseph A. Goguen, volume 4060 of Lec-
ture Notes in Computer Science, pages 596–615.
Springer, 2006.

[11] Peter Pacheco. Parallel Programming With MPI.
Morgan Kaufmann, 1996.

[12] Stephen F. Siegel. Verifying parallel programs
with MPI-Spin. In Franck Cappello, Thomas
Hérault, and Jack Dongarra, editors, Recent Ad-
vances in Parallel Virtual Machine and Mes-
sage Passing Interface, 14th European PVM/MPI
User’s Group Meeting, Paris, France, September
30 - October 3, 2007, Proceedings, volume 4757 of
Lecture Notes in Computer Science, pages 13–14.
Springer, 2007.

[13] Stephen F. Siegel, Anastasia Mironova, George S.
Avrunin, and Lori A. Clarke. Using model check-
ing with symbolic execution to verify parallel nu-
merical programs. In Lori L. Pollock and Mauro
Pezzé, editors, Proceedings of the ACM SIGSOFT
International Symposium on Software Testing and
Analysis, ISSTA 2006, Portland, Maine, USA,
July 17–20, 2006, pages 157–168. ACM, 2006.

[14] Stephen F. Siegel, Anastasia Mironova, George S.
Avrunin, and Lori A. Clarke. Combining symbolic
execution with model checking to verify parallel
numerical programs. ACM Transactions on Soft-
ware Engineering and Methodology, 17(2):Article
10, 1–34, 2008.

92

FIT2009（第8回情報科学技術フォーラム）

（第1分冊）




