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Abstract

This paper deals with the maximum-weight 2-path
packing problem (M2PP), which is the problem of
computing a set of vertex-disjoint paths of length 2
in a given edge-weighted complete graph so that
the total weight of edges in the paths is maxi-
mized. Previously, Hassin and Rubinstein gave a
randomized cubic-time approximation algorithm for
M2PP which achieves an expected ratio of 35

67 − ϵ ≈
0.5223−ϵ for any constant ϵ > 0. We refine their al-
gorithm and derandomize it to obtain a determinis-
tic cubic-time approximation algorithm for the prob-
lem which achieves a better ratio (namely, 0.5265−ϵ
for any constant ϵ > 0).

1 Introduction

Let G be an edge-weighted complete graph whose
number of vertices is a multiple of 3. A 2-path pack-
ing of G is a set of 1

3 |V (G)| vertex-disjoint paths of
length 2 in G. Given G, M2PP requires the com-
putation of a 2-path packing P of G such that the
total weight of edges on the paths in P is maximized
over all 2-path packings of G.

M2PP is a classic NP-hard problem; indeed, its
decision version is contained in Garey and Johnson’s
famous book on the theory of NP-completeness [2].
Hassin and Rubinstein [4] have presented a random-
ized cubic-time approximation algorithm for M2PP
which achieves an expected ratio of 35

67 − ϵ for
any constant ϵ > 0. In this paper, we improve
their result in twofold by presenting a determinis-
tic cubic-time approximation algorithm for M2PP
which achieves a better ratio (namely, 0.5265− ϵ for
any constant ϵ > 0).

To obtain our deterministic approximation algo-
rithm for M2PP, we first obtain a new randomized
cubic-time approximation algorithm for M2PP by
refining the algorithm due to Hassin and Rubinstein.
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Like their algorithm, our new randomized algorithm
starts by computing a maximum cycle cover C in
the input graph G, then processes C to obtain three
2-path packings of G, and finally outputs the max-
imum weighted packing among the three packings.
Unlike their algorithm, our algorithm processes tri-
angles in C in a different way than the other cy-
cles in C. By carefully analyzing the new algorithm,
we can show that it achieves an expected ratio of
0.5265(1 − ϵ) for any constant ϵ > 0. We then de-
randomize the algorithm using the pessimistic esti-
mator method [5]; the derandomization is nontrivial.

2 Basic Definitions

Throughout the remainder of this paper, a graph
means an undirected graph without parallel edges
or self-loops each of whose edges has a nonnegative
weight.

Let G be a graph. We denote the vertex set of
G by V (G) and denote the edge set of G by E(G).
For a set F of edges in G, G− F denotes the graph
obtained from G by removing the edges of F . The
degree of a vertex v in G is the number of edges
incident to v in G. The weight of a set F of edges
in G, denoted by w(F ), is the total weight of edges
in F . If F consists of a single edge e, we write w(e)
instead of w({e}). The weight of a subgraph H of
G, denoted by w(H), is w (E(H)).

A cycle in G is a connected subgraph of G in which
each vertex is of degree 2. A path in G is either a
single vertex of G or a connected subgraph of G
in which exactly two vertices are of degree 1 and
the others are of degree 2. A path component of
G is a connected component of G that is a path.
The length of a cycle or path C, denoted by |C|,
is the number of edges in C. We call a cycle C
of G a triangle if |C| = 3, and call it a 4+-cycle
otherwise. A cycle cover of G is a subgraph H of
G with V (H) = V (G) in which each vertex is of
degree 2. A maximum-weight cycle cover of G is a
cycle cover of G whose weight is maximized over all
cycle covers of G. A matching of G is a (possibly
empty) set of pairwise nonadjacent edges of G. A
maximum-weight matching of G is a matching of G
whose weight is maximized over all matchings of G.
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The distance between two vertices u and v in G is
the shortest length of a path between u and v in G.

For a random event A, Pr[A] denotes the probabil-
ity that A occurs. For a random event A and one or
more random events B1, . . . , Bh, Pr[A | B1, . . . , Bh]
denotes the probability that A occurs given the oc-
currences of B1, . . . , Bh. For a random variable X,
E [X] denotes the expected value of X. For a ran-
dom variable X and one or more random events
B1, . . . , Bh, E [X | B1, . . . , Bh] denotes the expected
value of X given the occurrences of B1, . . . , Bh.

3 A Randomized Approxima-
tion Algorithm for M2PP

Throughout the remainder of this paper, we fix
an instance G of M2PP and an arbitrary constant
ϵ > 0. Moreover, we fix a maximum-weight 2-path
packing Opt of G.

The outline of Hassin and Rubinstein’s algo-
rithm [4] (H&R-algorithm for short) is as follows:

(1) Compute a maximum-weight cycle cover C of
G. (Comment: w(C) ≥ w(Opt).)

(2) Modify C by breaking each cycle C in C with
|C| > 1

ϵ into cycles of length at most 1+ 1
ϵ such

that the total weight of the cycles is at least
(1 − ϵ) · w(C). (Comment: w(C) ≥ (1 − ϵ) ·
w(Opt).)

(3) Process C to obtain three 2-path packings P1,
P2, and P3 of G and then output the maxi-
mum weighted packing among them. (Com-
ment: The names P1, P2, and P3 are inherited
from the H&R-algorithm.)

Our algorithm differs from H&R-algorithm only
in the computation of P3. Before detailing our new
computation of P3, we first review their results on
P1 and P2.

Lemma 3.1 [4] Let α · w(C) be the total weight
of edges in triangles in C. Then, w(P1) ≥ ( 1

2 +
1
6α)w(C) ≥ ( 1

2 + 1
6α)(1 − ϵ) · w(Opt).

Lemma 3.2 [4] Let β · w(Opt) be the total weight
of those edges {u, v} such that some path of length 2
in Opt contains both u and v and some cycle in C
contains both u and v. Then, w(P2) ≥ β · w(Opt).

We next detail our new computation of P3 which
is basically a refinement of the computation of P3

in H&R-algorithm and is also a modification of an
algorithm in [1] for a different problem. The first
step is as follows:

1. Compute a maximum-weight matching M1 in a
graph G1, where V (G1) = V (G) and E(G1) =
{{u, v} ∈ E(G) : u and v belong to different
cycles in C}.

Note that w(M1) is heavy when Opt contains a
heavy set of edges between cycles in C. So, we want
to add the edges of M1 to C. However, adding the
edges of M1 to C yields a graph which may have a lot
of vertices of degree 3 and is hence far from a 2-path
packing of G. To remedy this situation, we want to
compute a set R of edges in C and a subset M of
M1 such that adding the edges of M to C −R yields
a graph C′ in which each connected component is a
cycle or path. The next four steps of our algorithm
are for computing R, M , and C′. Before describing
the details, we need to define several notations. Let
C1, . . . , Cr be the cycles in C. Moreover, throughout
the remainder of this paper, let p be the smallest
positive real number satisfying the inequality 3p2 −
2p3 ≥ 3

16 ; the reason why we select p in this way
will become clear in Lemma 5.2. Note that 0.276 <
p < 0.277; hence (1 − p)2 > 1

2 . Now, we are ready
to describe Steps 2 through 5 of our algorithm.

2. For each cycle Ci in C, process Ci (indepen-
dently of the other cycles in C) by performing
the following steps:

(a) Initialize Ri to be the empty set.
(b) If |Ci| = 3, then for each edge e of Ci, add

e to Ri with probability p. (Comment:
After this step, 0 ≤ |Ri| ≤ 3. In contrast,
|Ri| = 1 in H&R-algorithm.)

(c) If |Ci| ≥ 4, then perform the following
steps:

i. Choose one edge e1 from Ci uniformly
at random.

ii. Starting at e1 and going clockwise
around Ci, label the other edges of Ci

as e2, . . . , ec, where c is the number of
edges in Ci.

iii. Add the edges ej with j ≡ 1 (mod 4)
and j ≤ c− 3 to Ri. (Comment: Ri is
a matching of Ci and |Ri| = ⌊ |Ci|

4 ⌋.)
iv. If c ≡ 1 (mod 4), then add ec−1 to

Ri with probability 1
4 . (Comment: Ri

remains a matching in Ci. Moreover,
E [|Ri|] = |Ci|−1

4 + 1 · 1
4 = |Ci|

4 .)
v. If c ≡ 2 (mod 4), then add ec−1 to

Ri with probability 1
2 . (Comment: Ri

remains a matching in Ci. Moreover,
E [|Ri|] = |Ci|−2

4 + 1 · 1
2 = |Ci|

4 .)
vi. If c ≡ 3 (mod 4), then add ec−2 to

Ri with probability 3
4 . (Comment: Ri

remains a matching in Ci. Moreover,
E [|Ri|] = |Ci|−3

4 + 1 · 3
4 = |Ci|

4 .)
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3. Let R = R1 ∪ · · · ∪ Rr.

4. Let M be the set of all edges {u, v} ∈ M1 such
that both u and v are of degree 0 or 1 in graph
C − R.

5. Let C′ be the graph obtained from C − R by
adding the edges in M . (Comment: Each con-
nected component of C′ is a cycle or path.
Moreover, every triangle in C′ is also a trian-
gle in C while every 4+-cycle C in C′ contains
at least two edges in M .)

Note that our algorithm processes those cycles Ci

of C with |Ci| ≥ 4 as in the H&R-algorithm. So, we
have the following lemma:

Lemma 3.3 For every cycle Ci of C with |Ci| ≥ 4,
the following hold:

(1) For every edge e of Ci, Pr[e ∈ R] = 1
4 .

(2) For every vertex v of Ci, v is incident to at
most one edge of R and the probability that v is
incident to one edge of R is 1

2 .

By the comments on Step 5, C′ is not so far from
a 2-path packing. We can now finish computing P3

by performing the following steps:

6. For each cycle C in C′ with |C| ≥ 4, choose one
edge in E(C) ∩ M uniformly at random and
delete it from C′.

7. If C′ has at least one path component, then per-
form the following two steps:

(a) Connect the path components of C′ into a
single cycle Y by adding some edges of G.

(b) Break Y into paths each of length 2 by
removing a set F of edges from Y with
w(F ) ≤ 1

3 · w(Y ).

8. Remove the minimum-weight edge from each
triangle in C′. (Comment: After this step,
each connected component of C′ is a path of
length 2.)

9. Let P3 = C′.

The following fact is clear from Steps 7 through 9:

Fact 3.4 Let E6 be the set of edges of C that re-
main in C′ immediately after Step 6. Then, w(P3) ≥
2
3w(E6).

Consider an edge e ∈ M1 ∪ E(C). Let te be the
probability that e remains in C′ immediately after
Step 6. If e appears in a triangle in C, then by
Step 2b, te = 1 − p. If e ∈ E(C) does not appear in
a triangle in C, then by Statement (1) in Lemma 3.3,

te = 3
4 . If e ∈ M1, then we can claim that te ≥ 3

16 .
So,

E [w(E6)]

≥ (1 − p)α · w(C) +
3
4
(1 − α) · w(C) +

3
16

w(M1)

=
(

3
4

+ (
1
4
− p)α

)
w(C) +

3
16

w(M1).

Note that the above argument is informal because
we have not proved the claim. Indeed, we will
not prove the claim because we will never use it
to prove anything. The claim and the above in-
formal argument are only for helping the reader
understand what we are going to do next. In
fact, the next section shows how to derandomize
Steps 2 through 6 (using the pessimistic estimator
method [5]) to obtain E6 deterministically so that
w(E6) ≥ ( 3

4 +(1
4 − p)α)w(C)+ 3

16w(M1). Of course,
this lower bound on w(E6) will be proved rigorously
(without using the unproved claim).

4 A Crucial Lemma

This section proves a lemma that is crucial for
our derandomization of the above randomized al-
gorithm. It is similar to Lemma 3 in [4] but does
not follow from the latter directly.

Lemma 4.1 Consider an arbitrary i ∈ {1, . . . , r}
with |Ci| ≥ 4, and consider two arbitrary vertices u
and v of Ci. Let A1 be the event that the degree of
v in graph Ci − Ri is 1. Let A2 be the event that
u and v are the endpoints of some path component
of Ci − Ri. Let A3 be the event that u and v are
endpoints of two different path components of Ci −
Ri. For each j ∈ {1, 2, 3}, let sj = Pr[Aj ]. Then,
1
2s2 + 1

4s3 ≤ 1
4s1, or equivalently, 1

2s2 + 1
4s3 ≤ 1

8 .

Proof. We prove the lemma by a case-analysis.
Let c = |Ci| and let d be the distance between u
and v in Ci. Since s3 ≤ s1, we need to consider only
those cases where s2 ̸= 0. For example, s2 = 0 if
d ≥ 4 + (|Ci| mod 4) and thus we ignore such Ci

in the rest of the proof. We say that Ci is long if
|Ci| ≥ 8, and is short otherwise. Note that if Ci

is long, then at least two edges are added to Ri in
Step 2c. For convenience, starting at v and going
clockwise around Ci, we label the edges of Ci as f1,
f2, . . . , fc. To prove that 1

2s2 + 1
4s3 ≤ 1

8 , we may
assume that the edges incident to u in Ci are fd and
fd+1.

Case 1: |Ci| = 4. In this case, d = 1 or 2. If d = 1
(cf. Figure 1(1)), then s2 = 1

4 and s3 = 0. If d = 2,
then s2 = s3 = 0. So, we always have 1

2s2+ 1
4s3 ≤ 1

8 .
Case 2: |Ci| = 5. In this case, d = 1 or 2. If

d = 1 (cf. Figures 1(2) through (5)), then s2 =
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Figure 1: Short cycles Ci, where the edges in Ri are
dotted.

1
5 ·

3
4 + 1

5 ·
1
4 = 1

5 and s3 = 2 · 1
5 ·

1
4 = 1

10 . If d = 2 (cf.
Figures 1(6) through (8)), then s2 = 1

5 · 1
4 = 1

20 and
s3 = 2· 15 ·

1
4 = 1

10 . So, we always have 1
2s2+ 1

4s3 ≤ 1
8 .

Case 3: |Ci| = 6. In this case, d = 1, 2, or 3.
If d = 1 (cf. Figures 1(9) through (12)), then s2 =
s3 = 2 · 1

6 · 1
2 = 1

6 . If d = 2 (cf. Figures 1(13)
and (14)), then s2 = 0 and s3 = 2· 1

6 ·
1
2 = 1

6 . If d = 3
(cf. Figures 1(15) and (16)), then s2 = 2 · 1

6 · 1
2 = 1

6

and s3 = 0. So, we always have 1
2s2 + 1

4s3 ≤ 1
8 .

Case 4: |Ci| = 7. In this case, d = 1, 2, or 3. If
d = 1 (cf. Figures 1(17) through (19)), then s2 =
1
7 · 1

4 = 1
28 and s3 = 2 · 1

7 · 3
4 = 3

14 . If d = 2 (cf.
Figure 1(20)), then s2 = 1

7 · 3
4 = 3

28 and s3 = 0. If
d = 3 (cf. Figures 1(21) through (23)), then s2 =
1
7 · 3

4 = 3
28 and s3 = 2 · 1

7 · 3
4 = 3

14 . So, we always
have 1

2s2 + 1
4s3 ≤ 1

8 .
Case 5: Ci is long and |Ci| ≡ 0 (mod 4). In this

case, s2 = 0 if d ̸= 3. Moreover, if d = 3, then s2 = 1
4

and s3 = 0. So, we always have 1
2s2 + 1

4s3 ≤ 1
8 .

Case 6: Ci is long and |Ci| ≡ 1 (mod 4). Let
k = c−1

4 and S = {f1, f4, f5, fc}. Obviously, s2 = 0
if d ≥ 5. So, it suffices to consider the following
subcases:

Case 6.1: d = 4. In this case, let S =
{f1, f4, f5, fc}. Then, s2 = 1

c · 3
4 because event

A2 occurs exactly when edge f5 is selected as e1

in Step 2(c)i and edge f3 is not added to Ri in
Step 2(c)iv. Moreover, if event A3 occurs, exactly
one of the following events occurs:

• A3,1: S ∩ Ri = {f4, fc}.

• A3,2: S ∩ Ri = {f1, f5}.

• A3,3: S ∩ Ri = {fc, f5} and f3 ∈ Ri.

• A3,4: S ∩ Ri = {f1, f4}.

Obviously, event A3,1 occurs exactly when one
of f9, f13, . . . , fc is selected as e1 in Step 2(c)i,
implying that Pr[A3,1] = k−1

c . Similarly, event
A3,2 occurs exactly when one of f1, f10, f14, . . . ,
fc−3 is selected as e1 in Step 2(c)i, implying that
Pr[A3,2] = k−1

c . Moreover, event A3,3 occurs exactly
when f5 is selected as e1 in Step 2(c)i and f3 is added
to Ri in Step 2(c)iv, implying that Pr[A3,3] = 1

c · 1
4 .

Furthermore, event A3,4 occurs exactly when f6 is
selected as e1 in Step 2(c)i and f4 is added to Ri in
Step 2(c)iv, implying that Pr[A3,4] = 1

c · 1
4 . There-

fore, s3 = 2(k−1
c + ·1c · 1

4 ) = 4k−3
2c . Consequently,

1
2s2 + 1

4s3 = 3
8c + 4k−3

8c ≤ 1
8 for c = 4k + 1.

Case 6.2: d = 3. In this case, let S =
{f1, f3, f4, fc}. Then, s2 = k−1

c because event A2

occurs exactly when one of f9, f13, . . . , fc is se-
lected as e1 in Step 2(c)i. Moreover, if event A3

occurs, exactly one of the following events occurs:

• A3,1: S ∩ Ri = {f3, fc}.

• A3,2: S ∩ Ri = {f1, f4}.

• A3,3: S ∩ Ri = {f1, f3}.

Obviously, event A3,1 occurs exactly when f5 is
selected as e1 in Step 2(c)i and f3 is added to Ri in
Step 2(c)iv, implying that Pr[A3,1] = 1

c ·
1
4 . Similarly,

event A3,2 occurs exactly when f6 is selected as e1 in
Step 2(c)i and f4 is added to Ri in Step 2(c)iv, im-
plying that Pr[A3,2] = 1

c ·
1
4 . Furthermore, event A3,3

occurs exactly when f3 is selected as e1 in Step 2(c)i
and f1 is added to Ri in Step 2(c)iv, implying that
Pr[A3,3] = 1

c ·
1
4 . Therefore, s3 = 3 · 1

c ·
1
4 = 3

4c . Con-
sequently, 1

2s2 + 1
4s3 = k−1

2c + 3
16c ≤ 1

8 for c = 4k+1.
Case 6.3: d = 2. In this case, let S =

{f1, f2, f3, fc}. Then, s2 = 1
c · 1

4 because event A2

occurs exactly when f5 is selected as e1 in Step 2(c)i
and f3 is added to Ri in Step 2(c)iv. Moreover, if
event A3 occurs, exactly one of the following events
occurs:

• A3,1: S ∩ Ri = {f2, fc}.

• A3,2: S ∩ Ri = {f1, f3}.
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Obviously, event A3,1 occurs exactly when f2 is
selected as e1 in Step 2(c)i and fc is added to Ri in
Step 2(c)iv, implying that Pr[A3,1] = 1

c · 1
4 . More-

over, event A3,2 occurs exactly when f3 is selected as
e1 in Step 2(c)i and f1 is added to Ri in Step 2(c)iv,
implying that Pr[A3,2] = 1

c · 1
4 . Therefore, s3 =

2 · 1
c ·

1
4 = 1

2c . Consequently, 1
2s2 + 1

4s3 = 1
8c + 1

8c ≤ 1
8

for c = 4k + 1.
Case 6.4: d = 1. In this case, s2 = 1

c · 1
4 because

event A2 occurs exactly when f2 is selected as e1

in Step 2(c)i and fc is added to Ri in Step 2(c)iv.
Moreover, event A3 occurs exactly when {u, v} ∈ Ri.
Therefore, s3 = 1

4 by Statement (1) in Lemma 3.3.
Consequently, 1

2s2+ 1
4s3 = 1

8c+ 1
16 ≤ 1

8 for c = 4k+1.
Case 7: Ci is long and |Ci| ≡ 2 (mod 4). Let k =

c−2
4 and S = {f1, f5, f6, fc}. Obviously, s2 = 0 if

d ̸∈ {1, 3, 5}. So, it suffices to consider the following
subcases:

Case 7.1: d = 5. In this case, let S =
{f1, f5, f6, fc}. Then, s2 = 1

c · 1
2 because event

A2 occurs exactly when edge f6 is selected as e1

in Step 2(c)i and edge f4 is not added to Ri in
Step 2(c)iv. Moreover, if event A3 occurs, exactly
one of the following events occurs:

• A3,1: S ∩ Ri = {f6, fc} and f4 ∈ Ri.

• A3,2: S ∩ Ri = {f6, fc} and f2 ∈ Ri.

• A3,3: S ∩ Ri = {f1, f5} and f7 ̸∈ Ri.

• A3,4: S ∩ Ri = {f1, f5} and f7 ∈ Ri.

Obviously, event A3,1 occurs exactly when f6 is
selected as e1 in Step 2(c)i and f4 is added to Ri in
Step 2(c)iv, implying that Pr[A3,1] = 1

c ·
1
2 . Similarly,

event A3,2 occurs exactly when f2 is selected as e1

in Step 2(c)i and fc is added to Ri in Step 2(c)iv,
implying that Pr[A3,2] = 1

c ·
1
2 . Moreover, event A3,3

occurs exactly when one of f1, f11, f15, . . . , fc−3 is
selected as e1 in Step 2(c)i, implying that Pr[A3,3] =
k−1

c . Furthermore, event A3,4 occurs exactly when
f7 is selected as e1 in Step 2(c)i and f5 is added to
Ri in Step 2(c)iv, implying that Pr[A3,4] = 1

c · 1
2 .

Therefore, s3 = 3 · 1
2c + ·k−1

c = 2k+1
2c . Consequently,

1
2s2 + 1

4s3 = 1
4c + 2k+1

8c ≤ 1
8 for c = 4k + 2.

Case 7.2: d = 3. In this case, let S =
{f1, f3, f4, fc}. Then, s3 = 1

c · 1
2 because event

A3 occurs exactly when edge f3 is selected as e1 in
Step 2(c)i and edge f1 is added to Ri in Step 2(c)iv.
Moreover, if event A2 occurs, exactly one of the fol-
lowing events occurs:

• A2,1: S ∩ Ri = {f4, fc} and f6 ̸∈ Ri.

• A2,2: S ∩ Ri = {f4, fc} and f6 ∈ Ri.

Obviously, event A2,1 occurs exactly when one of
f10, f14, . . . , fc is selected as e1 in Step 2(c)i, im-
plying that Pr[A2,1] = k−1

c . Moreover, event A2,2

occurs exactly when f6 is selected as e1 in Step 2(c)i
and f4 is added to Ri in Step 2(c)iv, implying that
Pr[A2,2] = 1

c · 1
2 . Therefore, s2 = k−1

c + 1
2c = 2k−1

2c .
Consequently, 1

2s2 + 1
4s3 = 2k−1

4c + 1
8c ≤ 1

8 for
c = 4k + 2.

Case 7.3: d = 1. In this case, s2 = 1
c · 1

2 because
event A2 occurs exactly when f2 is selected as e1

in Step 2(c)i and fc is added to Ri in Step 2(c)iv.
Moreover, event A3 occurs exactly when {u, v} ∈ Ri.
Therefore, s3 = 1

4 by Statement (1) in Lemma 3.3.
Consequently, 1

2s2+ 1
4s3 = 1

4c+ 1
16 ≤ 1

8 for c = 4k+2.
Case 8: Ci is long and |Ci| ≡ 3 (mod 4). Let k =

c−3
4 and S = {f1, f6, f7, fc}. Obviously, s2 = 0 if

d ̸∈ {2, 3, 6}. So, it suffices to consider the following
subcases:

Case 8.1: d = 6. In this case, let S =
{f1, f6, f7, fc}. Then, s2 = 1

c · 1
4 because event

A2 occurs exactly when edge f7 is selected as e1

in Step 2(c)i and edge f4 is not added to Ri in
Step 2(c)iv. Moreover, if event A3 occurs, exactly
one of the following events occurs:

• A3,1: S ∩ Ri = {f7, fc} and f4 ∈ Ri.

• A3,2: S ∩ Ri = {f7, fc} and f3 ∈ Ri.

Obviously, event A3,1 occurs exactly when f7 is
selected as e1 in Step 2(c)i and and f4 is added to
Ri in Step 2(c)iv, implying that Pr[A3,1] = 1

c · 3
4 .

Moreover, event A3,2 occurs exactly when f3 is se-
lected as e1 in Step 2(c)i and fc is added to Ri in
Step 2(c)iv, implying that Pr[A3,2] = 1

c · 3
4 . There-

fore, s3 = 2 · 3
4c = 3

2c . Consequently, 1
2s2 + 1

4s3 =
1
8c + 3

8c ≤ 1
8 for c = 4k + 3.

Case 8.2: d = 3. In this case, let S =
{f1, f3, f4, fc}. Then, if event A2 occurs, exactly
one of the following events occurs:

• A2,1: S ∩ Ri = {f4, fc} and f7 ̸∈ Ri.

• A2,2: S ∩ Ri = {f4, fc} and f7 ∈ Ri.

Obviously, event A2,1 occurs exactly when one of
f11, f15, . . . , fc is selected as e1 in Step 2(c)i, im-
plying that Pr[A2,1] = k−1

c . Moreover, event A2,2

occurs exactly when f7 is selected as e1 in Step 2(c)i
and f4 is added to Ri in Step 2(c)iv, implying that
Pr[A2,2] = 1

c · 3
4 . Therefore, s2 = k−1

c + 3
4c = 4k−1

4c .
Similarly, if event A3 occurs, exactly one of the

following events occurs:

• A3,1: S ∩ Ri = {f3, fc}.

• A3,2: S ∩ Ri = {f1, f4}.

Obviously, event A3,1 occurs exactly when f3 is
selected as e1 in Step 2(c)i and fc is added to Ri in
Step 2(c)iv, implying that Pr[A3,1] = 1

c · 3
4 . More-

over, event A3,2 occurs exactly when f4 is selected as
e1 in Step 2(c)i and f1 is added to Ri in Step 2(c)iv,
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implying that Pr[A3,2] = 1
c · 3

4 . Therefore, s3 =
2· 3

4c = 3
2c . Consequently, 1

2s2+ 1
4s3 = 4k−1

8c + 3
8c ≤ 1

8
for c = 4k + 3.

Case 8.3: d = 2. In this case, s2 = 1
c · 3

4 because
event A2 occurs exactly when f3 is selected as e1

in Step 2(c)i and fc is added to Ri in Step 2(c)iv.
Moreover, s3 = 0. Therefore, 1

2s2 + 1
4s3 = 3

8c ≤ 1
8

for c = 4k + 3. 2

5 Derandomizing Steps 2
through 6

For convenience, we define a random variable xi for
each i ∈ {1, . . . , r}, as follows:

• If |Ci| = 3, then let xi = Ri.

• If |Ci| ≥ 4, then let xi denote the pair (e1, b),
where e1 is the edge randomly selected in
Step 2(c)i and b is the number of edges added to
Ri in Steps 2(c)iv through 2(c)vi. (Comment:
b ≤ 1.)

Obviously, xi has 8 possible values if |Ci| = 3; xi has
|Ci| possible values if |Ci| ≥ 4 and |Ci| ≡ 0 (mod 4);
xi has 2|Ci| possible values if |Ci| ≥ 4 and |Ci| ̸≡ 0
(mod 4).

5.1 Outline of the Derandomization

We may assume that our algorithm processes the
cycles in C in the following order: C1, . . . , Cr where
the triangles precede the others. Then, the compu-
tation till the end of Step 2 can be represented by
a rooted tree T as follows. The root of T corre-
sponds to C1 and each child of the root corresponds
to C2. In general, if a node of T corresponds to Ci

(1 ≤ i ≤ r − 1), then each child of the node in T
corresponds to Ci+1.

Consider a cycle Ci ∈ C. Let µ be a node of
T corresponding to Ci. Let h be the number of
possible values of the random variable xi. Then, µ
has h children ν1, . . . , νh in T . Fix an arbitrary one-
to-one correspondence between the possible values
of xi and the children of µ. The edge from µ to
νj (1 ≤ j ≤ h) in T is labeled with the possible
value of xi corresponding to νj . This finishes the
construction of T .

Fact 5.1 Let µ be a nonleaf node of T , let Ci be
the cycle in C corresponding to µ, and let ν1, . . . , νh

be the children of µ in T . For each j ∈ {1, . . . , h},
let ℓj be the label of the edge from µ to νj. Define
a function qi as follows: For each j ∈ {1, . . . , h},
qi(ℓj) = Pr[xi = ℓj ]. Then,

∑h
j=1 qi(ℓj) = 1.

The size of T is exponential and we cannot afford
to construct it explicitly. The essence of the pes-
simistic estimator method is to associate a value to
each node of T satisfying the following four condi-
tions:

(C1) The value of a given node of T can be com-
puted in polynomial time.

(C2) The value of each leaf node µ of T is smaller
than or equal to E [w(E6) | x1 = ℓ1, . . . , xr =
ℓr], where ℓ1, . . . , ℓr are the labels of the edges
on the path from the root to µ in T .

(C3) The value of each nonleaf node µ of T is
smaller than or equal to the largest value of
a child of µ in T .

(C4) The value of the root is large enough (com-
pared to the maximum weight of a 2-path pack-
ing of G).

Instead of constructing T explicitly, we only con-
struct one path Q of T by starting at the root
and repeating the following (till arriving at a leaf
node of T ): Construct the child of the current node
whose value is the largest among all the children,
and then move to that child. Once we have ob-
tained Q, we start at the root and walk down path
Q. While walking down Q, we process C1, . . . , Cr

where we make our choices according to the labels on
the edges of Q (instead of making random choices).
In this way, we arrive at a leaf node ν and obtain
R1, . . . , Rr deterministically. By repeatedly apply-
ing Condition (C3), we can see that the value of
ν is at least as large as that of the root. More-
over, by Condition (C2), the value of ν is at most
as large as E [w(E6) | x1 = ℓ1, . . . , xr = ℓr], where
ℓ1, . . . , ℓr are the labels of the edges in Q. Thus,
E [w(E6) | x1 = ℓ1, . . . , xr = ℓr] is at least as large
as the value of the root, and is hence large enough
by Condition (C4).

Now that we have R1, . . . , Rr, we can proceed
to Steps 3 through 5, obtaining R, M , and C′.
Obviously, after further performing Step 6, we ob-
tain C′ whose expected weight is E [w(E6) | x1 =
ℓ1, . . . , xr = ℓr]. Fortunately, instead of performing
Step 6, we can perform the following (deterministic)
step:

6′. For each cycle C in C′, choose the edge in
E(C)∩M of minimum weight and delete it from
C′.

After Step 6’, w(C′) is at least as large as
E [w(E6) | x1 = ℓ1, . . . , xr = ℓr] and is hence at least
as large as the value of the root.
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5.2 Evaluating a Node of T
When applying the pessimistic estimator method,
the difficulty is in how to define the value of a node
µ of T .

Let µ be a node of T . Let C1, . . . , Ci−1 be the cy-
cles corresponding to the ancestors of µ in T . Note
that i = 1 if µ is the root of T , and i = r + 1 if µ is
a leaf node of T . Let Q be the path from the root
to µ in T . Suppose that we process C1, . . . , Ci−1

where we make our choices according to the la-
bels on the edges of Q (instead of making random
choices). In this way, we obtain R1, . . . , Ri−1. Based
on R1, . . . , Ri−1, we construct an auxiliary graph Hµ

as follows:

• V (Hµ) = V (G) and E(Hµ) ⊆ E(C) ∪ M1.

• E(Hµ) ∩ E(C) =
∪i−1

j=1(E(Cj) − Rj).

• For each edge {u, v} ∈ M1, e ∈ E(Hµ) if and
only if either both u and v are incident to edges
in

∪i−1
j=1 Rj , or one of them is incident to an

edge in
∪i−1

j=1 Rj and the other is contained in∪r
j=i V (Cj).

Note that each connected component of Hµ is a
path or cycle. We classify the path components K
of Hµ into two types as follows:

• Type 1: At least one endpoint of K is contained
in

∪i−1
j=1 V (Cj).

• Type 2: Both endpoints of K are contained in∪r
j=i V (Cj).

C3
C4

3

3
C7

6
C8 C9C1

C2
7

C5 C62

2 2
222

2
2 2

2
4 4 4 4 4 4

4

8

92

4

5 5

9

1 1 1
1

1
1 1 1

1

1

1

1 92

Figure 2: An example of E(C)∪M1, where Ci = C7,
the edges in M1 are thin, the edges in C are bold,
the edges in

∪i−1
j=1 Rj are bold broken, the number

near each edge is its type, and the edges of Hµ are
those of type h with 3 ≤ h ≤ 9.

Moreover, we define the type of each edge e ∈
E(C)∪M1 at µ and assign a coefficient cµ(e) to e as
follows (see Figure 2):

• Type 1: Neither endpoint of e is contained in∪i−1
j=1 V (Cj). Define cµ(e) as follows:

– If e appears in some triangle Cj , then
cµ(e) = 1 − p.

– If e appears in some 4+-cycle Cj , then
cµ(e) = 3

4 .

– If e ∈ M1, then cµ(e) = 3
16 .

• Type 2: At least one endpoint of e is contained
in

∪i−1
j=1 V (Cj) but e is not an edge in Hµ. De-

fine cµ(e) = 0.

• Type 3: e ∈ M1 and e appears in a cycle of Hµ.
Define cµ(e) = b−1

b , where b is the number of
edges in both M1 and the cycle of Hµ containing
e.

• Type 4: Either e is an edge of both C and Hµ,
or e is an edge in M1 and appears in a type-1
path component of Hµ and both endpoints of e

are contained in
∪i−1

j=1 V (Cj). Define cµ(e) = 1.

• Type 5: e is an edge in M1 and appears in a
type-1 path component of Hµ and one endpoint
of e is contained in some 4+-cycle Cj with i ≤
j ≤ r. Define cµ(e) = 1

2 .

• Type 6: e is an edge in M1 and appears in a
type-1 path component of Hµ and one endpoint
of e is contained in some triangle Cj with i ≤
j ≤ r. Define cµ(e) = 2p − p2.

• Type 7: e is an edge in M1 and appears in a
type-2 path component of Hµ, and neither end-
point of e is contained in

∪r
j=i V (Cj). Define

cµ(e) = 3
4 .

• Type 8: e is an edge in M1 and appears in a
type-2 path component of Hµ, and one end-
point of e is contained in some triangle Cj with
i ≤ j ≤ r. Define cµ(e) = 3

2p − 1
2p2.

• Type 9: e is an edge in M1 and appears in a
type-2 path component of Hµ, and one end-
point of e is contained in some 4+-cycle Cj with
i ≤ j ≤ r. Define cµ(e) = 3

8 .

Now, we are ready to define the pessimistic es-
timator, namely, a function f mapping each node
µ of T to a real number as follows: f(µ) =∑

e∈E(C)∪M1
cµ(e)w(e). We call f(µ) the value of

node µ.

5.3 Verifying Conditions (C1)
through (C4)

Clearly, f(µ) can be computed in linear time. Thus,
Condition (C1) is satisfied.

To see that Condition (C2) is also satisfied, con-
sider an arbitrary leaf node µ of T . Let ℓ1, . . . , ℓr

be the labels of the edges on the path from the
root to µ in T . For each edge e ∈ E(C) ∪ M1,
cµ(e) = Pr[e ∈ E6 | x1 = ℓ1, . . . , xr = ℓr] because
e is of type 2, 3, or 4 at µ. Consequently, Condi-
tion (C2) is satisfied.

To see that Condition (C3) is also satisfied, it suf-
fices to prove the following two lemmas:
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Lemma 5.2 Let µ, Ci, ν1, . . . , νh, ℓ1, . . . , ℓh, qi be as
in Fact 5.1. Suppose that |Ci| = 3. Then, for every
e ∈ E(C) ∪ M1, cµ(e) ≤

∑h
j=1 qi(ℓj)cνj (e).

Proof. Consider an arbitrary edge e ∈ E(C)∪M1.
If the types of e at µ and its children are the same,
then by Fact 5.1, cµ(e) =

∑h
j=1 qi(ℓj)cνj (e). So,

assume that the type of e at µ differs from the type
of e at some child of µ. By this assumption, e cannot
be of type 2, 3, or 4 at µ. Moreover, since |Ci| = 3,
e cannot be of type 5 at µ. According to the type
of e at µ, we distinguish several cases as follows:

Case 1: e is of type 1 at µ. In this case, one of
the following three subcases occurs:

Case 1.1: e ∈ E(Ci). In this case, for each child
νj of µ, e can be of type 2 or 4 at νj . Because
of the way the algorithm processes triangles in C,∑

j qi(ℓj) = 1 − p, where j ranges over all integers
in {1, . . . , h} such that e is of type 4 at νj . So,∑h

j=1 qi(ℓj)cνj (e) = p ·0+(1−p) ·1 = 1−p = cµ(e).
Case 1.2: e ∈ M1, one endpoint of e appears in

Ci, and the other endpoint appears in some triangle
Cj with i + 1 ≤ j ≤ r. In this case, for each child
νj of µ, e can be of type 2, 6, or 8 at νj . Because
of the way the algorithm processes triangles in C,∑

j qi(ℓj) = (1−p)2, where j ranges over all integers
in {1, . . . , h} such that e is of type 2 at νj . For the
same reason,

∑
j qi(ℓj) ≥ p2, where j ranges over all

integers in {1, . . . , h} such that e is of type 6 at νj .
So,

∑
j qi(ℓj) ≤ 2p(1 − p), where j ranges over all

integers in {1, . . . , h} such that e is of type 8 at νj .
Hence,

∑h
j=1 qi(ℓj)cνj (e) ≥ (1 − p)2 · 0 + p2 · (2p −

p2)+2p(1−p) ·( 3
2p− 1

2p2) = 3p2−2p3 ≥ 3
16 = cµ(e),

where the last inequality holds because of our choice
of p.

Case 1.3: e ∈ M1, one endpoint of e appears in
Ci, and the other endpoint appears in some 4+-cycle
Cj with i + 1 ≤ j ≤ r. In this case, for each child
νj of µ, e can be of type 2, 5, or 9 at νj . Because
of the way the algorithm processes triangles in C,∑

j qi(ℓj) = (1−p)2, where j ranges over all integers
in {1, . . . , h} such that e is of type 2 at νj . For the
same reason,

∑
j qi(ℓj) ≥ p2, where j ranges over

all integers in {1, . . . , h} such that e is of type 5 at
νj . So,

∑
j qi(ℓj) ≤ 2p(1 − p), where j ranges over

all integers in {1, . . . , h} such that e is of type 9 at
νj . Hence,

∑h
j=1 qi(ℓj)cνj (e) ≥ (1− p)2 · 0 + p2 · 1

2 +
2p(1 − p) · 3

8 = 3
4p − 1

4p2 ≥ 3
16 = cµ(e), where the

last inequality holds because p > 0.276.
Case 2: e is of type 6 at µ. In this case, Ci con-

tains exactly one endpoint of e. Moreover, for each
child νj of µ, e can be of type 2 or 4 at νj . Be-
cause of the way the algorithm processes triangles
in C,

∑
j qi(ℓj) ≥ 2p − p2, where j ranges over all

integers in {1, . . . , h} such that e of type 4 at νj .
So,

∑h
j=1 qi(ℓj)cνj (e) = (1− p)2 · 0 + (2p− p2) · 1 =

2p − p2 = cµ(e).
Case 3: e is of type 7 at µ and Ci contains

both endpoints of the path component of Hµ con-
taining e. In this case, for each child νj of µ, e
can be of type 3 or 4 at νj . Because of the way
the algorithm processes triangles in C,

∑
j qi(ℓj) ≥

1−p2(1−p)−p(1−p)2, where j ranges over all inte-
gers in {1, . . . , h} such that e of type 4 at νj . Since
cνj (e) ≥ 1

2 when e is of type 3 at νj , it follows that∑h
j=1 qi(ℓj)cνj (e) ≥ (1− p2(1− p)− p(1− p)2) · 1 +

(p2(1−p)+p(1−p)2) · 1
2 = 1− 1

2p+ 1
2p2 ≥ 3

4 = cµ(e),
where the last inequality holds because p > 0.276.

Case 4: e is of type 7 at µ and Ci contains only one
endpoint of the path component of Hµ containing e.
In this case, for each child νj of µ, e can be of type 4
or 7 at νj . Since cνj (e) ≥ 3

4 when e is of type 4 or 7
at νj , it follows that

∑h
j=1 qi(ℓj)cνj (e) ≥ 3

4 = cµ(e).
Case 5: e is of type 8 at µ and Ci contains

both endpoints of the path component of Hµ

containing e. In this case, for each child νj of
µ, e can be of type 2, 3, or 4 at νj . Because of
the way the algorithm processes triangles in C,∑

j qi(ℓj) ≥ (2p − p2) − p2(1 − p) − p(1 − p)2,
where j ranges over all integers in {1, . . . , h}
such that e of type 4 at νj . For the same rea-
son,

∑
j qi(ℓj) = p2(1 − p) + p(1 − p)2, where j

ranges over all integers in {1, . . . , h} such that e
of type 3 at νj . Since cνj (e) ≥ 1

2 when e is of
type 3 at νj , it follows that

∑h
j=1 qi(ℓj)cνj (e) ≥(

2p − p2 − p2(1 − p) − p(1 − p)2
)

· 1 +(
p2(1 − p) + p(1 − p)2

)
· 1

2 = 3
2p − 1

2p2 = cµ(e).
Case 6: e is of type 8 at µ, Ci contains only one

endpoint u of the path component of Hµ containing
e, and u is also an endpoint of e. In this case, for
each child νj of µ, e can be of type 2, 4, or 7 at νj .
Because of the way the algorithm processes triangles
in C,

∑
j qi(ℓj) = (1 − p)2, where j ranges over all

integers in {1, . . . , h} such that e of type 2 at νj .
For the same reason,

∑
j qi(ℓj) ≥ p2, where j ranges

over all integers in {1, . . . , h} such that e of type 4
at νj . So,

∑
j qi(ℓj) ≤ 2p(1 − p), where j ranges

over all integers in {1, . . . , h} such that e of type 7
at νj . So,

∑h
j=1 qi(ℓj)cνj (e) ≥ p2 ·1+2p(1−p) · 3

4 =
3
2p − 1

2p2 = cµ(e).
Case 7: e is of type 8 at µ, Ci contains only one

endpoint u of the path component of Hµ containing
e, and u is not an endpoint of e. In this case, for
each child νj of µ, e can be of type 6 or 8 at νj . Since
cνj (e) ≥ 3

2p − 1
2p2 when e is of type 6 or 8 at νj , it

follows that
∑h

j=1 qi(ℓj)cνj (e) ≥ 3
2p − 1

2p2 = cµ(e).
Case 8: e is of type 9 at µ. In this case, for each

child νj of µ, e can be of type 5 or 9 at νj . Since
cνj (e) ≥ 3

8 when e is of type 5 or 9 at νj , it follows
that

∑h
j=1 qi(ℓj)cνj (e) ≥ 3

8 = cµ(e). 2
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Lemma 5.3 Let µ, Ci, ν1, . . . , νh, ℓ1, . . . , ℓh, qi be as
in Fact 5.1. Suppose that |Ci| ≥ 4. Then, for every
e ∈ E(C) ∪ M1, cµ(e) ≤

∑h
j=1 qi(ℓj)cνj (e).

Proof. Consider an arbitrary edge e ∈ E(C)∪M1.
As in Lemma 5.2, assume that the type of e at µ
differs from the type of e at some child of µ. By
this assumption, e cannot be of type 2, 3, or 4 at µ.
Moreover, since |Ci| ≥ 4 and the algorithm processes
the triangles in C first, e cannot be of type 6 or 8 at
µ. According to the type of e at µ, we distinguish
several cases as follows:

Case 1: e is of type 1 at µ. In this case, one of
the following two subcases occurs:

Case 1.1: e ∈ E(Ci). In this case, for each child νj

of µ, e can be of type 2 or 4 at νj . Because of the way
the algorithm processes 4+-cycles in C,

∑
j qi(ℓj) =

3
4 , where j ranges over all integers in {1, . . . , h} such
that e is of type 4 at νj . So,

∑h
j=1 qi(ℓj)cνj (e) =

1
4 · 0 + 3

4 · 1 = cµ(e).
Case 1.2: e ∈ M1 and Ci contains one endpoint

of e. In this case, the other endpoint appears in
some 4+-cycle Cj with i + 1 ≤ j ≤ r. Moreover,
for each child νj of µ, e can be of type 2, 5, or 9
at νj . Because of the way the algorithm processes
4+-cycles in C,

∑
j qi(ℓj) = 1

2 , where j ranges over
all integers in {1, . . . , h} such that e is of type 2
at νj . Since cνj (e) ≥ 3

8 no matter whether e is of
type 5 or 9 at νj , it follows that

∑h
j=1 qi(ℓj)cνj

(e) ≥
1
2 · 0 + 1

2 · 3
8 = 3

16 = cµ(e).
Case 2: e is of type 5 at µ. In this case, exactly

one endpoint of e appears in Ci. Moreover, for each
child νj of µ, e can be of type 2 or 4 at νj . Be-
cause of the way the algorithm processes 4+-cycles
in C,

∑
j qi(ℓj) = 1

2 , where j ranges over all inte-
gers in {1, . . . , h} such that e of type 4 at νj . So,∑h

j=1 qi(ℓj)cνj (e) = 1
2 · 0 + 1

2 · 1 = 1
2 = cµ(e).

Case 3: e is of type 7 at µ and Ci contains only one
endpoint of the path component of Hµ containing
e. In this case, for each child νj of µ, e can be
of type 4 or 7 at νj . Since cνj (e) ≥ 3

4 no matter
whether e is of type 4 or 7 at νj , it follows that∑h

j=1 qi(ℓj)cνj (e) ≥ 3
4 = cµ(e).

Case 4: e is of type 7 at µ and Ci contains both
endpoints of the path component of Hµ containing
e. In this case, for each child νj of µ, e can be
of type 3, 4, or 7 at νj . Because of the way the
algorithm processes 4+-cycles in C,

∑
j qi(ℓj) ≥ 1

2 ,
where j ranges over all integers in {1, . . . , h} such
that e of type 4 at νj . Since cνj (e) ≥ 1

2 no matter
whether e is of type 3 or 7 at νj , it follows that∑h

j=1 qi(ℓj)cνj (e) ≥ 1
2 · 1 + 1

2 · 1
2 = 3

4 = cµ(e).
Case 5: e is of type 9 at µ, Ci contains only one

endpoint u of the path component of Hµ containing
e, and u is not an endpoint of e. In this case, for
each child νj of µ, e can be of type 5 or 9 at νj . Since

cνj (e) ≥ 3
8 no matter whether e is of type 5 or 9 at

νj , it follows that
∑h

j=1 qi(ℓj)cνj (e) ≥ 3
8 = cµ(e).

Case 6: e is of type 9 at µ, Ci contains only one
endpoint u of the path component of Hµ containing
e, and u is an endpoint of e. In this case, for each
child νj of µ, e can be of type 2, 4, or 7 at νj . Be-
cause of the way the algorithm processes 4+-cycles
in C,

∑
j qi(ℓj) = 1

2 , where j ranges over all inte-
gers in {1, . . . , h} such that e of type 2 at νj . Since
cνj (e) ≥ 3

4 no matter whether e is of type 4 or 7 at νj ,
it follows that

∑h
j=1 qi(ℓj)cνj (e) ≥ 1

2 ·
3
4 = 3

8 = cµ(e).

Case 7: e is of type 9 at µ and Ci contains both
endpoints of the path component K of Hµ contain-
ing e. In this case, for each child νj of µ, e can be of
type 2, 3, 4, or 7 at νj . Let u and v be the endpoints
of K. We may assume that u is an endpoint of e but
v is not. We say that a child νj of µ is dangerous for e
if u and v are the endpoints of some path component
in the graph (V (Ci), E(Ci)∩E(Hνj )). Similarly, we
say that a child νj of µ is critical for e if u and v are
endpoints of two distinct path components in the
graph (V (Ci), E(Ci)∩E(Hνj )). For each child νj of
µ such that e is in Hνj , consider the following three
cases:

• Case (a): νj is dangerous for e. In this case,
e must be of type 3 at νj and the cycle of Hνj

containing e contains at least two edges in M1.
So, cνj (e) ≥ 1

2 .

• Case (b): νj is critical for e. In this case, e may
be of type 3, 4, or 7 at νj . If e is of type 3 at νj ,
then the cycle of Hνj containing e contains at
least four edges in M1; hence cνj (e) ≥ 3

4 . If e is
of type 4 or 7 at νj , then obviously cνj (e) ≥ 3

4 .
So, we always have cνj (e) ≥ 3

4 .

• Case (c): νj is neither dangerous nor critical
for e. In this case, e is of type 4 at νj and so
cνj (e) = 1.

Now, let s1 =
∑

j qi(ℓj), where j ranges over all
integers in {1, . . . , h} such that e is in Hνj . Because
of the way the algorithm processes 4+-cycles in C,
s1 = 1

2 . Let s2 =
∑

j qi(ℓj), where j ranges over
all j ∈ {1, . . . , h} such that e is in Hνj and νj is
dangerous for e. Let s3 =

∑
j qi(ℓj), where j ranges

over all integers in {1, . . . , h} such that e is in Hνj

and νj is critical for e. By Lemma 4.1, 1
2s2 + 1

4s3 ≤
1
4s1. Hence,

∑h
j=1 qi(ℓj)cνj (e) ≥ (1 − s1) · 0 + s2 ·

1
2 + s3 · 3

4 + (s1 − s2 − s3) · 1 ≥ 3
4s1 ≥ 3

8 = cµ(e). 2
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By Lemmas 5.2 and 5.3,

f(µ) ≤
∑

e∈E(C)∪M1

w(e)
h∑

j=1

qi(ℓj)cνj (e)

=
h∑

j=1

qi(ℓj)
∑

e∈E(C)∪M1

cνj (e)w(e)

=
h∑

j=1

qi(ℓj)f(νj).

So, by Fact 5.1, f(µ) ≤ maxh
j=1 f(νj). Conse-

quently, Condition (C3) is satisfied. The following
lemma shows that Condition (C4) is also satisfied:

Lemma 5.4 The value of the root of T is at least(
3
4 + ( 1

4 − p)α
)
w(C)+ 3

16w(M1). Consequently, it is
at least

(
27
32 − 3

4ϵ − (p − 1
4 )(1 − ϵ)α − 3

32β
)
w(Opt).

Proof. First note that each edge e ∈ E(C) ∪
M1 is of type 1 at the root of T . Also re-
call that α · w(C) is the total weight of edges in
the triangles Ci in C. So, the value of the root
is at least (1 − p)α · w(C) + 3

4 (1 − α) · w(C) +
3
16w(M1) =

(
3
4 + ( 1

4 − p)α
)
w(C) + 3

16w(M1) ≥(
3
4 + ( 1

4 − p)α
)
(1 − ϵ)w(Opt) + 3

16w(M1). As ob-
served in [4], the construction of M1 clearly implies
that w(M1) ≥ 1

2 (1 − β)w(Opt). Thus, the lemma
holds. 2

6 Analysis of the Approxima-
tion Ratio

By Fact 3.4 and Lemma 5.4, the output 2-path pack-
ing P3 satisfies the following inequality:

w(P3)

≥ 2
3
·
(

27
32

− 3
4
ϵ−(p− 1

4
)(1−ϵ)α− 3

32
β

)
w(Opt).

So, by Lemmas 3.1 and 3.2, we have

4(p − 1
4
)w(P1) +

1
16

w(P2) + w(P3)

≥ 1 + 32p − 32pϵ

16
· w(Opt).

Therefore, the weight of the best packing among P1,
P2, and P3 is at least

1 + 32p − 32pϵ

1 + 64p
·w(Opt) ≥ 1 + 32p

1 + 64p
·(1−ϵ)w(Opt).

Given G, C can be computed in O(|V (G)|3)
time [3]. Moreover, given G and C, P1 and P2 can
be computed in O(|V (G)|3) time [4]. Furthermore,

one can easily verify that P3 can be computed from
G and C in O(|V (G)|2) time. So, our deterministic
algorithm runs in O(|V (G)|3) time.

In summary, we have proved the following theo-
rem:

Theorem 6.1 For any constant ϵ > 0, there is
a deterministic cubic-time approximation algorithm
for M2PP that achieves a ratio of 1+32p

1+64p · (1 − ϵ) >

0.5265 · (1 − ϵ).
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