M-045

無線通信ネットワークにおける位相拡散時分割通信タイミング制御 Phase Diffusion Time Division method for Wireless Communication Network

関山 浩介 [†]	久保 祐樹 [‡]	袹
Kosuke Sekiyama	Yuki Kubo	Shiger

■永 茂 § 伊達正晃§ ru Fukunaga

Masaaki Date

まえがき 1.

近年,通信機能を有するセンサデバイスを環境に散 布し,無線通信を介して情報授受を行うセンサーネット ワークの研究が盛んになっており, 在庫管理システム, 道路交通監視システム,大規模施設の空調,照明制御シ ステムなどへの適用が期待されている.センサーネット ワークにおける技術的課題は多く,無線ノード数の増加 に伴い集中的な管理,運用は困難になるため,基地局の 集中的な管理を必要としない手法,無作為にノードを配 置し,センサーノードの故障,追加などにも柔軟に対処 できる手法など,従来の集中管理手法から自律分散的ア プローチへの転換が期待されている。また、センサネッ トワークではバッテリー駆動が基本となるが,無線通信 では送信距離の2~4乗に比例して送信電力が必要とな る[1].そのため小型化,省電力化も非常に重要な課題で ある.無線通信では長距離を1ホップで通信する代わり に,マルチホップを利用した通信により1ホップを短く する事は消費電力の節約につながることも指摘されてい る[1].しかしながら,分散的なアクセス制御方式とし て,従来広く用いられている CSMA[2,3] などのプロト コルでは,パケットの増加に伴ってパケットの衝突によ るネットワークのスループットに著しい低下が生じる. また,送信にかかる電力の節約という観点からもパケッ トの衝突は望ましくない.さらにキャリアセンスにかか るコストの問題 [4] や隠れ端末問題 [2,3] など,問題点 は多い.

一方,衝突回避の方式として TDMA 方式 [5] がある. これは時間次元での多重化技術であり,1フレームに1 スロットづつ各ノードが通信するタイミングを割り当 てることによって重複を避ける方法であるが、基本的に TDMA 方式は基地局を中心とした集中管理型手法であ る. 文献 [6] のようにスケジューリングを分散的に行う TDMA なども提案されているが,この手法はネットワー クに参加しているノード総数とその識別番号が必要であ る.またタイムスロットの同期をとる必要がある.

本論文では,位相拡散時分割方式と称する無線通信 ネットワークにおける自律分散的通信タイミング制御方 法を提案する.本手法は,各ノードの近傍の情報のみに よる完全分散的な手法である.また時間次元のタイミン グ調整であるが TDMA を基本としたフレームとスロッ トを利用したスケジューリングを扱うのではなく、ノー ドを振動子としてモデル化し,衝突が起こりえるノード との位相差の形成によって時間軸の重複をさけるもので ある.

位相拡散時分割方式 2.

2.1 概要

センサーノードが空間に多数存在する環境を考える。 図1が想定する環境である.図中の小円が各ノードの 通信範囲であり,実際のデータ通信を行うことのできる 範囲を表す.大円は衝突を回避するための通信タイミン グの調整を行う相互作用範囲を表す.一般的なセンサー ネットワークの研究では通信頻度が低い事を前提として いるが,ここではすべてのノードが一定間隔で必ず通信 を行う高い通信頻度を想定する.そのため通信の衝突が 多発する.しかし,その衝突を回避するスケジューリン グを行う基地局は存在しない.本論文で提案する位相拡 散時分割方式は , このような環境で各ノードが近傍の情 報のみで自律的に時分割を実現する方法である.

本研究では, 各ノードにある位相区間通信を行う結合 振動子ダイナミクスをモデル化.ノードiの位相を θ_i と して,図2のようにノードは位相が $0 \le \theta < \phi_c$ の範囲 で通信を行うものとする. 位相の調整により近傍ノード との通信タイミングの干渉を回避する.このイメージが 図 3 である.振動子の ID は図 1 中のノード ID の位相 と対応しており,互いに干渉しないノードが同じ位相に 集まることにより,衝突を効率的に回避できる(例えば 1,8,11 のノードは通信が干渉しない). ここで説明の為 に図には ID を示してあるが, この手法はノード ID を 必要としない.さらに本手法は単に通信タイミングをず らして干渉を防ぐだけでなく,均等な位相差パターンの 形成を実現し通信帯域の確保を実現するものである.

2.2 衝突と衝突率の定義

ノードの通信タイミングがうまく形成できているかを 表す指標として,衝突,衝突率を定義する.これは実際 のデータ通信の衝突ではなく,通信タイミングの形成を 表す指標である.通信タイミングの衝突が起きるのは以 下のどちらかの条件を満たす時である.

- 1. 通信範囲内の他のノードが自ノードと同時に通信を 行う時に衝突が起きる.
- 2. 図4のようにお互いには通信範囲内にいないノード (図4ではノード1と3)が共通の通信範囲内のノー ド (図4ではノード2)に同時に通信を行う時に衝突 が起きる.これは隠れ端末問題と呼ばれる

通信タイミングの衝突が起きる条件は2ホップ先,つま り通信範囲の半径を R とした時, 2R の半径の内部に存 在するノードの状態に着目する必要がある.この2Rを 相互作用範囲と呼ぶ.衝突発生に関する条件は,この相 互作用範囲に存在するノードの位相から求まる.

[†]福井大学工学部知能システム工学科

[‡]福井大学大学院工学研究科知能システム工学専攻

[§]沖電気工業(株)研究開発本部 ユビキタスシステムラボラトリ

図 1: ノードの配置と相互作用範囲

図 2: 位相による通信と待機の表現

図 3: 位相差の形成

2.2.1 衝突の定義

ノードが取り得る状態 Qを以下に定義する.

$$Q = \{Wait, Communication, Collision\}.$$
 (1)

Wait は通信待ちの待機状態, *Communication* は通信可能な状態, *Collision* は衝突状態である.次にノードの位相 θ_i によってノードが通信可能状態 (1) か待機状態 (0) かを表す状態として,次を与える.

$$O_i(\theta_i) = \begin{cases} 1 & 0 \le \theta < \phi_c, \\ 0 & \phi_c \le \theta < 2\pi. \end{cases}$$
(2)

また、ノード *i* の半径 2*R* の相互作用範囲内部にいるノードの集合を *K_i* とすると,通信衝突の有無を表す状態は次式で表される.

$$x_{i}(t) = \begin{cases} 1 & O_{i}(t) = 1, \text{ and } \sum_{j \in K_{i}} O_{j}(t) > 0, \\ 0 & \text{else.} \end{cases}$$
(3)

この式はノード *i* が通信できる状態であり,相互作用範 囲内に通信可能状態のノードが存在する時に通信タイミ ングの衝突1を表す.この時,図5ようなのノードの状 態遷移図を考える事ができる.

2.2.2 衝突率の定義

まず累積衝突数 γ を定義する.これは角速度 ω_i のノード i の周期 $T_i = \frac{2\pi}{\omega_i}$ として,過去 nT_i の間にノードの状

図 5: ノード状態の遷移図

態が Collision に遷移した回数とする. この累積衝突数 を最大累積衝突数で規格化したものが衝突率 c_i である.

$$c_i(t) = \frac{\gamma}{n}.\tag{4}$$

ここで最大衝突数とはノード i が1周期に1回通信した として n 周期の累積から n 回と求まる.

注意として各ノードは位相のダイナミクス (詳しくは 2.3 節) に従い位相を変化させているため周期 T_i は毎周 期変化するが,簡単のために上のように考えた.このた め規格化した $c_i(t)$ は1を超える可能性があるが,それ は1として扱う.この様に考えても相互作用による位相 の変化が固有振動数 ω に比べて小さい限り問題はない. また,実際の周期 T_i を計算すれば, $c_i(t)$ は1を超えない.

2.3 位相ダイナミクス

位相ダイナミクスは相互作用範囲のノードとの結合振 動子で記述する.従来の結合振動子の応用研究では引き 込みによる同期を利用するものが主であったが,本手法 はお互いに反発しながら通信タイミングを調整すること から適切な位相差形成を図るものである.また本手法に は確率的な探索が含まれているが,単にランダムに位相 を拡散して通信衝突を回避するだけではなく,ノード間 の相互作用によって,適切に分割された位相分割パター ンを形成できる点が特徴である.これを実現するダイナ ミクスは次式で与えられる.

$$\dot{\theta}_i = \omega_i + \frac{k}{N_i} \sum_{j \in K_i} R(\Delta \theta_{ij}) + \xi(S_i).$$
 (5)

ここで K_i はノードiの相互作用範囲内のノード集合, N_i は K_i の要素の数,ノードiとj位相差を $\Delta \theta_{ij} = \theta_j - \theta_i$ (ただし $\Delta \theta_{ij}$ は常に区間 $0 \leq \Delta \theta_{ij} < 2\pi$ で表現する)とする.ノードiの角速度 ω_i ,位相応答関数 $R(\Delta \theta_{ij})$,確率項 $\xi(S_i)$ から構成される.これらについては次に述べる.

2.3.1 位相応答関数

位相応答関数は相互作用範囲のノードと反発を表す関 数として次のようにする.

$$R(\Delta \theta_{ij}) = \begin{cases} \alpha \cdot (\Delta \theta_{ij} - \frac{2\pi}{p}) & \Delta \theta_{ij} \leq \frac{2\pi}{p}, \\ \beta \cdot \Delta \hat{\theta}_{ij} & \frac{2\pi}{p} < \Delta \theta_{ij} < 2\pi - \frac{2\pi}{p} \text{ and } \Delta \hat{\theta}_{ij} < \frac{\pi}{p}, \\ \beta \cdot (\Delta \hat{\theta}_{ij} - \frac{2\pi}{p}) & \frac{2\pi}{p} < \Delta \theta_{ij} < 2\pi - \frac{2\pi}{p} \text{ and } \Delta \hat{\theta}_{ij} > \frac{\pi}{p}, \\ \alpha \cdot (\Delta \theta_{ij} - \frac{(p-1)\pi}{p}) & 2\pi - \frac{2\pi}{p} \leq \Delta \theta_{ij}. \end{cases}$$

$$\beta = v(1 - c_i)^2. \tag{6}$$

ここで $\Delta \hat{\theta}_{ij} = \Delta \theta_{ij} \pmod{\frac{2\pi}{p}}$ とする.この関数は衝突 を避ける為の位相差を形成する効果 (α の係数の部分) と 位相を均等に p 分割する位相差を形成する効果 (β の係 数の部分) の 2 つの効果を含む関数である. β は衝突率 c_i の関数としているのは,まず衝突の起きない位相差を 形成し,そのあとで均等な位相差を作るためである.図 6 にこの関数の形状を示す.

2.3.2 確率項

位相応答関数による反発だけでは各ノードの位相順序 関係が変わらないため,図3に示すような最適な位相関 係に到達できない.このような状況で位相の順序関係を 変える効果を確率項 $\xi(S_i)$ によって実現する.

まず衝突率が高いほど急激なストレス値を返す関数として $s(c_i)$ を定義する.

$$s(c_i) = \begin{cases} 0 & c_i = 0, \\ 0.01 & 0 < c_i \le 0.9, \\ 0.9 & 0.9 < c_i. \end{cases}$$
(8)

次にストレスの蓄積としてストレスを積分した S_i は次のようになる.

$$S_i = \int_{t_s}^t s(c_i)dt.$$
(9)

ここで t_s は確率項 $\xi(S_i)$ の効果で,前回ランダムに位相 が変化した時刻である.蓄積されたストレスに応じて確 率的な値を返す関数を $q(S_i)$ とする.

$$q(S_i) = \begin{cases} \mu & \text{with probability } S_i, \\ 0 & \text{with probability } 1 - S_i. \end{cases}$$
(10)

ここで S_i が1を超えた場合は1として扱う. μ は $a \le \mu < b$ 区間の乱数値である.またこの確率的な項が周期的に機能するように $\xi(S_i)$ を決定する.

$$\xi(S_i) = \begin{cases} q(S_i) & \text{if } t = mnT_i \ (m = 1, 2, \cdots) \\ 0 & \text{else.} \end{cases}$$
(11)

これにより衝突率が高い状態が続く(つまり位相応答関数の反発だけでは解決できない)と位相がランダムに変化してノードの位相順序関係が変わる.

図 6: 位相応答関数 (p=5の場合) 図 7:ストレス関数

表 1: シミュレーションパラメータ

R	通信範囲	42[m]
2R	相互作用範囲	84[m]
n	衝突率計算の周期	10
ω	ノードの固有振動数	10[rad/s]
μ	乱数値	[- <i>π</i> , <i>π</i>) の一様乱数
α	位相応答関数の係数	30
v	位相応答関数の係数	0.1

3. シミュレーション

3.1 シミュレーション設定

シミュレーションは位相の初期値を $[0, 2\pi]$ でランダム に設定して行った.共通のパラメータは表 1 となってい る.ノードのトポロジーとして case 1, case 2 を考え次 のように設定した.

- **case 1** 正規格子 (図 8(a)) 縦横 N 個づつ,計 N × N 個のノードがグリッドに 整列して配置,ノードの間隔 d = 40m とする.
- **case 2** 摂動格子(図 8(b)) 正規格子に配置した場所から $[-\frac{d}{2}, \frac{d}{2})$ の一様乱数で 移動させる.

3.2 結果,考察

シミュレーションでの評価の指標として 2.2 節で導入 した衝突率を用いる.図9,図10の(a) 平均衝突率のグ ラフがこれにあたり,横軸は時間,縦軸は各ノードの衝 突率をノード数で平均したものである.平均衝突率が低 下することが通信タイミングの干渉が減少している事を 表す.もう一つの評価指標として位相差のヒストグラム を用いる.図9,図10の(b)(c)のグラフがこれにあたり, 横軸は位相差[0,2\pi),縦軸はノード数であり,どの位相 差に相互作用範囲のノードが存在するかを表す.

図 9: case 1 正規格子モデル, $\phi_c = \frac{2\pi}{9} - \frac{2\pi}{180}, p = 9$

結果 (case 1) 通信位相区間 $\phi_c = \frac{2\pi}{9} - \frac{2\pi}{180} とし, 位$ 相応答関数を9分割するもの (p = 9)を選んで実験した. この設定では通信範囲のノード数4,相互作用範囲のノー ド数12となる.つまり各ノードは競合する12個の他の ノードと位相2πを9分割する位相差を形成する.図9が シミュレーション結果である.図9(a) は5回の試行の平 均衝突率をすべてプロットしたものである.t = 500[s] ほ どで衝突が解消した位相差を形成できている事がわかる. また位相差のヒストグラムを見ると,図9(b)のt = 0[s] では位相の初期値ををランダムに設定したため,どの位 相差にもほぼ均等に存在しているが,衝突を回避できて いるt = 800[s] 時には図9(c)より,位相を9分割すると ころに他のノードの位相が存在することがわかる.9分 割するパターンとなるのは位相応答関数でp = 9を選ん だことによるものである.

結果 (case 2) case 2 では場所によって通信範囲のノー ドや相互作用範囲のノード数は case 1 から多少上下す るため,その分余裕を持たせる意味で $\phi_c=rac{2\pi}{10}-rac{2\pi}{180}$ と し, 位相応答関数を10分割するもの (p = 10)を選んで 実験した.また摂動を加えた配置となっているため試行 ごとに配置は異なる.図10(a)を見ると case 1 の場合と 同じように衝突を回避する位相差を形成できていること がわかる.また図10(b)(c)の位相差のヒストグラムから 位相を 10 分割する位相差を形成できていることがわか る.つまり,本手法は厳密な正規格子の配置のみに限定 される手法ではなく , 位相応答関数の分割数と ϕ_c に余 裕を持たせる事で無作為にノードが配置された環境にも 対応できる.図10(a)の5回の試行の内1回は衝突率が なかなか低下しないが,これは配置のランダム性から他 の試行よりもノード密度の高い場所が存在したためか、 もしくは拡散項による探索における確率的な要因のため ではないかと考えられる.

図 10: case 2 摂動格子モデル, $\phi_c = \frac{2\pi}{10} - \frac{2\pi}{180}, p = 10$

4. むすび

本研究では完全分散的な通信タイミング制御方式の実 現のために位相拡散時分割方式を提案した.これは結合 振動子の理論を応用し,センサーノードを振動子として モデル化して,通信の衝突を回避する位相差を形成する 位相ダイナミクスによるものである.本手法の有効性の 検証として数値シミュレーションを行い,各ノードが適 切に分割された位相分布を形成し通信の衝突を回避でき ること示した.今後は実フィールドでの実現を目指して 通信誤りの導入など,モデルやシミュレーションの拡張 を行う必要がある.

参考文献

- Jan M. Rabaey, M. Josie Ammer, Julio L. da Silva, Danny Patel, and Shad Roundy. Picoradio supports ad hoc ultra-low power wireless networking. *Computer*, Vol. 33, No. 7, pp. 42–48, 2000.
- [2] L. Kleinrock and F.A. Togami. Packet switching in radio channels : Part1 - carrier sense multiple access modes and their throughput delay characteristics. *IEEE Trans. Commun*, Vol. COM-23, No. 12, pp. 1400–1416, 1975.
- [3] F.A. Togami nad L.kleinrock. Packet switching in radio channels part2 - the hidden terminal problem in carrier sense multiple access modes and busytone solution. *IEEE Trans. Commun*, Vol. COM-23, No. 12, pp. 1417– 1433, 1975.
- [4] S. G. Glisic. 1-persistent carrier sense multiple access in radio channels with imperfect carrier sensing. *IEEE Trans. on Comm.*, Vol. 39, No. 3, pp. 458–464, 1991.
- [5] David D. Falconer, Fumiyuki Adachi, and Gudmundson. Time division multiple access methods for wireless personal communications. *IEEE Communications Magazine*, Vol. 33(1), pp. 50–57, 1995.
- [6] A. Ephremides and T.V. Truong. Scheduling broadcasts in multihop radio networks. *IEEE Transactions* on Communications, Vol. 38(4), pp. 456–460, 1990.