
A Method for Selfish Node Detection and Avoidance in Wireless
Ad Hoc Networks

Antoine Bourlon† Oyunchimeg Shagdar† Bing Zhang†

Abstract. Unlike military applications, there is no guarantee
that users fully cooperate in civilian mobile ad hoc networks.
One node could stop forwarding other nodes' packets to
maximize its own benefits. Such a node is called a selfish node,
whose behavior would largely degrade the performance of the
entire network. In this paper, we propose an algorithm to detect,
punish and avoid selfish nodes to alleviate their adverse effects.
Our algorithm modifies the MAC and DSDV routing protocol to
detect selfish nodes and reroute around them. We evaluate the
accuracy and efficiency of the mechanism by running simulation
on the ns-2 network simulator.

1. INTRODUCTION
Existing routing protocols presuppose a full cooperation of

participating nodes. However, in a civilian ad hoc network, a
user could disable the forwarding function of his terminal in
order to maximize its own benefits.

A definition of selfish nodes in ad hoc networks using reactive
routing protocols can be found in [1]: selfish nodes cooperate
during the route discovery phase but drop data packets routed
through them. Previous works have extended on-demand
protocols to mitigate [2] or discourage [3] selfishness. However,
a selfish node could also be uncooperative during the route
discovery phase by dropping control packets so that it will not be
chosen as hop node. On the other hand, with proactive protocols,
nodes must advertise their routing table information in order to
send or receive data packets. This can motivate a significant
number of nodes to adopt a selfish behavior, leading to the
deterioration of the network performance. Therefore we choose
to extend a proactive protocol, Destination-Sequenced Distance-
Vector (DSDV) [4], to make it react to the presence of selfish
nodes (section 2). The selfish node detection is performed at the
MAC layer (section 3). We show that these modifications allow
a significant increase in the network performance with a limited
number of “wrong” and “missed” detections (section 4).

2. SELFISH NODE DETECTION
We extend the IEEE 802.11MAC protocol so that it can detect

selfish nodes, defined as follows:
Definition. A selfish node participates in the routing process by
advertising its routing table information, but drops all data
packets routed through it (we call these packets “forwarding
packets”, in opposition to “self-generated” packets)

In [2], the “watchdog” extension of the DSR protocol allows a
node to control packet forwarding by comparing overheard
packets to recently sent packets. We adapt this watchdog
mechanism by implementing it at the MAC layer in order to start
monitoring the next hop’s behavior only after getting
confirmation (MAC-level ACK) of a successful transmission.
This way we avoid the uncertainty related to the link layer queue
delay and the multiple RTS or data packet retransmissions. Also,
we take congestion in consideration by (1) accepting any packet
forwarding, whatever the source is, as a proof of the next hop’s
willingness to cooperate, and (2) by tolerating a temporary
absence of forwarding, in case the next hop is busy sending self-
generated packets: its link layer queue may be full of self-

generated packets and forwarding packets dropped
unintentionally.

A table called Monitoring Table (MT) is used to monitor a
neighbor (hop, identified by the hop_MAC and hop_IP fields in
the MT) expected to forward data packets towards a certain end
destination (field dest). The (dest, hop) information allows the
MAC layer to be aware of route changes. MT entries also contain
a counter (sent_cnt) of packets transmitted to hop for dest, a flag
(self_pkt) indicating if hop sent self-generated, and a timer. The
detailed algorithm is as follows:
Monitoring Start. When a node A successfully transmits a
packet to a neighbor B, which is not the end destination of the
packet, A creates an MT entry corresponding to this destination
(If such entry already exists, see Monitoring Update). hop_MAC
and hop_IP are set with B’s MAC and IP addresses. The entry’s
timer and sent_cnt are initialized (sent_cnt = 1).
Monitoring Update. When A sends a packet to B, if an entry
already exists for the destination and hop has not changed since
the last transmission, sent_cnt is incremented. If hop has changed,
the entry is reset, with updated hop_ IP and hop_MAC. If the
timer has expired, see Monitoring Stop.
Overhearing. A overhears all neighbors’ transmissions. When A
overhears a data packet from B it checks the entries containing
B’s MAC address. By comparing the packet source IP address
and hop_IP, A can determine if it is a forwarding packet or a
self-generated packet. If forwarding, the corresponding entries
are deleted; if self-generated, the self_pkt flag is set for all
corresponding entries.
Link Breakage. If A detects a link breakage with B (after
multiple RTS or data packet retransmissions), all entries
containing B as hop are deleted. Also if B’s MAC layer detects a
link failure with the next hop, B’s DSDV agent should
immediately be notified (by enabling feedback from the MAC
layer). In reaction, B’s DSDV will stop sending packets through
the broken link and inform A of the link break.
Monitoring Stop. When A sends a packet to B, if the timer
corresponding to the end destination has expired: if A has sent a
significant number of packets to hop (sent_cnt > 5) but hop has
sent neither self-generated (self_pkt not set) nor forwarding
packets (entry exists), A considers hop selfish: the MAC layer
alerts the DSDV agent. If hop has not forwarded any packet but
sent self-generated packets (self_pkt set), A gives a second
chance to hop to forward at least one packet before the next
timeout. If hop persists in not forwarding packets, the MAC layer
alerts the DSDV agent.

3. SELFISH NODE AVOIDANCE
We extend the DSDV protocol to avoid and punish selfish

nodes detected by the MAC layer.

3.1. Routing table update and advertisement

DSDV, upon receiving a selfish detection alert from the MAC
layer, updates the routing table and notifies the other nodes in the
network. We add a new flag (selfish_flag) in each routing table
entry to “remember” selfish nodes. This selfish_flag information
has to be transmitted along with usual routing information.
Routing table entries are updated and advertised as follows (we
call SN the node reported selfish by the MAC layer): † ATR Adaptive Communications Research Lab.

179

M-044

FIT2004（第3回情報科学技術フォーラム）

(1) Entry with SN as destination: set the metric to ∞ and set
the selfish_flag.

(2) Entries with SN as next hop: set the metric to ∞ and
increment the sequence number.

(3) Broadcast a triggered update for these changes.
A node that receives a DSDV update packet with the selfish_flag
set for SN performs the same update process and propagates the
information. Also, if a node already informed of SN’s selfishness
receives a DSDV update packet with selfish_flag not set for SN,
it broadcasts a route to SN with selfish_flag set, to inform the
sender of the update packet.

3.2. Rerouting around selfish nodes

DSDV update packets from selfish nodes are dropped, so that
selfish nodes will not be chosen as next hop anymore. They also
become unable to receive data packets from other nodes (metric
set to ∞). This penalty aims at discouraging selfishness. Data
packets originated by selfish nodes are not dropped in order to
avoid mutual accusations.

The sequence number of routing table entries using a selfish
node as next hop is incremented so that this information is
propagated in the network. A node in possession of a fresher
sequence number or the destination itself will broadcast this new
sequence number, allowing nodes to learn a route going around
the selfish node (because update packets from selfish nodes are
ignored).

4. PERFORMANCE EVALUATION
We evaluate the efficiency of our extensions by running

simulations on the ns-2 network simulator. The simulation
topology consists in 40 nodes moving in an 800m*800m area,
according to the random waypoint mobility model [5], with a 5-
second pause time and a 10m/s speed. We run 500-second
simulations for 10 and 20 CBR (Constant Bit Rate) traffics with
a sending rate of 10 packets (512-byte size) per second. In the
simulations presented here neither senders nor receivers are
selfish.

Fig. 1 represents the influence of the fraction of selfish nodes
on the packet delivery ratio (PDR) when enabling (On) and
disabling (Off) the MAC detection mechanism. The timeout for
MT entries is fixed at 5 seconds. The extended version achieves
a maximum PDR increase of 30%, with 10 traffics and 50% of
selfish nodes. The improvement is still significant with a more
congested network (20 sources).

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Selfish Nodes / # Nodes

#
 d
at
a
pa
c
ke
ts
 r
e
c
e
iv
e
d
/
 #
 d
at
a
pa
c
ke
ts
 s
e
n
t

On - 10 sources

Off - 10 sources

On - 20 sources

Off - 20 sources

Fig. 1. Packet Delivery Ratio vs. fraction of selfish nodes

Fig. 2 represents the fraction of well-behaving nodes wrongly

accused (Wrong) as well as the fraction of nodes that dropped
packets because they were selfish but remained undetected
(Miss). The number of nodes accused by mistake (because of
link failure notifications lost in collisions, or data packets not

overheard) increases with congestion but remains below 0.8%.
The fraction of selfish nodes not detected (because they were
only asked to forward packets for a short time) remains below
3.5%.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 0.1 0.2 0.3 0.4 0.5

selfish nodes / # nodes

R
at
io
 o
f
m
is
se
d
(o
r
w
ro
n
gl
y
ac
c
u
se
d)
 N
o
de
s

Miss - 10 sources

Miss - 20 sources

Wrong - 10 sources

Wrong - 20 sources

Fig. 2. Missed/wrong detections vs. fraction of selfish nodes

5. CONCLUSION
We proposed some extensions to the MAC and DSDV

protocol so that nodes refusing to forward data packets can be
detected and avoided. Simulation results showed that these
extensions could significantly reduce the adverse effects of
selfish nodes on the global network performance. However, the
proposed scheme is only capable of detecting nodes dropping all
forwarding packets. It enforces a forwarding rate of one packet
every few seconds (5 seconds in the simulation presented). Such
a low threshold is required when congestion is taken in
consideration to limit the number of wrong accusations. Since
nodes considered selfish are punished, the detection mechanism
must differentiate between intentional drops and “forced” drops
(due to congestion and link breaks). Control of packet
forwarding could be more efficient if a forwarding policy was
imposed to nodes.

References
[1] M. Hollick, J.Schmitt, C. Seipl and R.Steinmetz. On the

effect of Node Misbehavior in Ad Hoc Networks, in
Processdings of IEEE International Conference on
Communications (ICC), June 2004.

[2] S. Marti, T. Giuli, K. Lai and M. Baker. Mitigating routing
misbehavior in mobile ad hoc networks, in Proceedings of
the ACM/IEEE International Conference on Mobile
Computing and Networking (Mobicom), Boston, August
2000.

[3] S. Sundaramurthy and E. M. Belding-Royer. The AD-MIX
Protocol for Encouraging Participation in Mobile Ad hoc
Networks, in Proceedings of the International Conference
on Network Protocols (ICNP), Atlanta, November 2003.

[4] C.E. Perkins and P. Bhagwat. Highly dynamic Destination-
Sequenced Distance-Vector routing (DSDV) for mobile
computers, in Proceedings of the SIG-COMM '94
Conference on Communications Architectures, Protocols
and Applications, August 1994.

[5] J. Broch, D.Maltz, D. Johnson, Y.C. Hu and J. Jetcheva. A
performance comparison of multi-hop wireless ad hoc
network routing protocols, in Proceedings of Mobicom ’98,
Dallas, October 1998.

180

FIT2004（第3回情報科学技術フォーラム）

