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1. Introduction 
Localization service in a household is one of the critical 

technologies to provide a suitable service for the resident based on 
his or her location in houses. Since residents do not carry 
constantly a device when they live in their houses, the techniques 
which require resident to be along with a device are unusable [1]. 
Hence, passive motion sensors such as Passive Infra-Red (PIR) 
sensors, which can detect the movement of humans without a need 
of carried device, are the industrial standard to provide such a 
service. Furthermore, there is a rising number of research studies 
showing that PIR can be exploited to perform human tracking [2], 
[3]. However, there are some disadvantages in terms of 
deployment cost and privacy concern to send a technical team to 
households. End-users might also be insufficiently experienced to 
install and manage a network of PIR sensors, especially for typical 
residents, such as older adults, with low technical skill. Therefore, 
to enable easy deployment of sensor network by anybody in their 
home, it is desirable that the home automation system has a self-
configuring function so that residents can install the systems by 
themselves easily. 

In this paper, we propose a method that automatically associate 
PIR sensors to their room location with a low amount of a priori 
knowledge. Such localization method would be the core building 
block of a self-configuring system which would help end-user 
deploying sensors effectively. 

2. Methodology 
To identify location of PIR sensor, we assume the typical 

scenario is that residents deploy the system on their own. Firstly, 
they obtain (buy or rent) a set of sensors. After the resident deploys 
those sensors on their own, they are requested to upload a floor 
plan image to a server. At the same time, sensors start detecting 
movements of residents and send the sensor events to the server. 
Finally, the sensor events are analyzed and the location of every 
sensor is estimated. By Estimating the travel time between pairs of 
sensors, we are able to perform a graph matching, and seek the 
best matching function to map sensor into the location by utilizing 
a distance between rooms (from floorplan) and the travelling time 
(from sensor events). The specific detail is described below. 

2.1 Floor plan Graph 

We introduce a floor plan graph Gfloor models the possible 
pathway (edge) from one location (node) to another location. To 
generate such graph, a floor plan image is provided to extract a set 
Lfloor = {l1,l2,...,ln} of rooms, the distance function fd : Efloor → R+, 
and a matching function ft : Lfloor → T to match a room li ∈ Lfloor 
to its room type where T = {entrance, corridor, kitchen, bathroom, 

living room, bedroom}. Then, the floor plan graph Gfloor = (Lfloor, 
Efloor, ft, fd) is generated where an edge in Efloor represents two 
locations a human can directly walk from one to another. In this 
paper, we assume that the floor plan graph has already identified 
by prior knowledge.  

2.2 Sensor Graph 

To estimate the location of sensors, the method first con- structs 
a sensor graph Gsensor = (S, Esensor , Tsensor ), where S is a set of 
sensors deployed in a house, an edge esensor = (si,sj) ∈ Esensor 
represents the fact that there was a direct trip between sensor si and 
sensor sj, and tsi,sj ∈  Tsensor is an estimated trip time when a 
resident walks from sensor si to sensor sj. This sensor graph is 
estimated from a sequence of events seqevent which is a time 
sequence of motion detection events. 

In literature [4], sensors are deployed densely, thus we can 
generate the Esensor by considering the number of event sensors 
from each pair of the sensor. However, the resident can pass the 
sensor in the middle in the scattered case. As a result, we adjust 
the method to deal with this case. We, therefore, introduce the 
notion of direct event sequence of pair (si , sj ), which is a sub 
sequence of events between sensor si and sensor sj having no event 
from another sensor in the middle (i.e., the direct successor) as in 
Fig. 1 (a). On the contrary, an indirect event sequence of (si , sj ) 
is a sub sequence of event sequence between sensors si and sj 
having event(s) from other sensor(s) in between (i.e., not direct 
successor) as in Fig. 1 (b). 

The existence of an edge esensor = (si , sj ) ∈ Esensor between 
sensor si and sensor sj is estimated by considering the number of 
direct event sequence of pair (si , sj ) using a threshold. Finally, the 
trip time tsi,sj ∈ Tsensor that the resident spends on walking on every 
edge esensor can be estimated. Briefly, our method analyzes both 
direct and indirect event sequences of sensor pairs (si , sj ). For 
example, we analyze an event sequence seqevent = {(s1, t1), (s2, t2), 
(s3, t3), (s1, t4), (s3, t5), (s2, t6), (s1, t7)} and generate a set of trip 
times Xs1,s2 = {t2 − t1, t4 − t2, t6 − t4, t7 − t6} of pair (s1, s2). After 
generating Xsi,sj , the method has two steps. 

 

 
Fig. 1 Subsequence of event sequence  
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2.2.1 Clustering 
The clustering step models different trip patterns (fast moving, 

typical trip, stop-and-go travel between loca- tion) from Xs1,s2 in 
order to filter out irrelevant times by utilizing GMM clustering. 
2.2.2 The estimation 

The estimation step computes the trip time from the remaining 
clusters. Specifically, the median of the trip time instances 
belonging to the two first clusters (shortest trip time values) is 
supposed to be the estimated trip time tsi,sj ∈ Tsensor. As a result, 
the clusters with the longest trip time values are assumed to due to 
stop-and-go behaviours or long displacements across the home 
and we can eliminate them. 

2.3 Matching 

In this study, we examine every matching pattern. For example, 
if we deploy d sensors in a house which contains n rooms (d is 
smaller than n) and if we identify k sensors in the key location, we 
have to consider nPd−k matching patterns. In each pattern, we 
compare the estimated trip time and the distance between rooms 
by a slack value ∆1 to consider the possibility of this pattern. For 
example, we consider the matching function A : S → Lfloor , our 
method calculates the shortest distance from location lu to location 
lv in floor plan graph Gfloor. After that, we estimate the trip time 
tlu,lv from location lu to location lv by using the velocity based on 
the recent studies about gait [5]. 

We denote Aall = {A1 , A2 , ...} is a set of all matching pattern 
where A1,A2 are the matching function A : S → Lfloor. Since, the 
number of rooms is greater than the number of sensors in scattered 
deployment. We, thus, introduce a feasible location set for each 
sensor, which is a set of locations being able to match to a sensor. 
Normally, every location is a member in feasible lists except the 
key location and the feasible list for a sensor in key location has 
one member. After that we apply the linear programming to seek 
all possible matching function. 

 
For each possible matching A where A:si→ lu and A:sj→ lv, we 

calculate the matching score score(A) by using following equation. 

We rank the matching score score(A) and select the matching 
patterns whose the score(A) is lower than a slack value ∆1. In this 
work, the slack value ∆1 is calculated by the lowest matching score 
plus 10%. Then we generate the matching frequency matrix M 
(miu) which represent how many time that sensor si is matched to 
location lu, and we match the sensor si ∈ S to the location l ∈ 
Lfloor when the miu is highest for each mi∗. 

 

3. Experiment 
3.1 Dataset 

To evaluate the approach on set of scattered Infrared sensors, 
we used the ContextAct@A4H dataset [6]. It is a rich, real-life 
daily living dataset collected in the Amiqual4Home smarthome. 
This Smart Home is fully functional and equipped with more that 
500 controllable or observable items (e. g., lighting, shutters, 

security systems, energy management, heating, etc.). Among the 
sensors, six PIR binary sensors were set in the ceiling of the 
kitchen, the living room, above the dinner table, above the bed of 
the bedroom, in the office and bathroom. 

The ContextAct@A4H dataset was collected while a person 
was living there alone during 30 days in June and November 
(summer and fall respectively). This collection resulted in 30756 
PIR firing. 

3.2 Matching performance 

We analyze the matching between sensors and room locations. 
The raw accuracy of matching result is 55%. However, when 
confusions of couch and table are reconsidered as true positive 
since they cover similar room, the accuracy becomes 78%. Highly 
confused rooms are bathroom and office. This is due to the fact 
they are very close in distance from the bedroom which was the 
key location. Hence a symmetry in the graph of sensors appeared 
and the two sensors were difficult to distinguish. If a fourth sensors 
was present in floor, this kind of symmetry could have been 
resolved. Similar problem can be emphasized for the confusion 
between table, entrance, toilets and stairs which are at similar 
distance from the kitchen. 

4. Conclusion 
In this paper, we have presented the results of a method to 

estimate automatically the location of a set of PIR binary sensors 
in home. The method is unsupervised and just needs the floor plan 
of the house and one or two key locations as prior knowledge. The 
results of the study show the difficulty of the task with a location 
accuracy from 55% to 78%. In particular, the small set of sensors 
decreases the redundancy in the values and hence the robustness 
of distance computation. 
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