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1 Introduction
Efficient scheduling is one of the most important fac-

tors to minimize the total execution time of an appli-
cation in a distributed computing system (DCS). It
requires the appropriate mapping of the application’s
component tasks to the machines in the DCS. Optimal
mapping can be carried out if the execution time of the
tasks on the machines can be predicted accurately.

The execution time depends not only on the physi-
cal machine (CPU) characteristics, but also the current
machine state, i.e. CPU load, free memory, etc. By
using the past values of execution time and the cor-
responding machine state, we can reasonably predict
the execution time in another state by regression anal-
ysis. We present a new cross validation criterion to
improve the prediction accuracy of the regression. We
evaluate the relative importance of parameters such as
CPU load, CPU type, main memory size, cache size,
etc. that affect the execution time and also compare
kernel functions that are used in regression. We found
that the execution time can be predicted with reason-
able accuracy, and that the exponential quadratic ker-
nel is better than other kernels used in our simulation.

2 Problem Description
Let (xi, yi), i = 1, . . . , n, be the stored data, where

xip, p = 1, . . . ,m, is the value of machine feature p in
observation xi, and yi is the execution time. The query
point is q = (q1, . . . , qm), and it is required to estimate
the execution time yq.

ŷq, the regression estimator of yq, is defined as

ŷq =
n∑

i=1

biq yi (1)

where the regression coefficients biq are given by

biq =
K(D(xi,q), h)∑n
l=1 K(D(xl,q), h)

(2)

Here, K(·) is known as the kernel function, D(·) mea-
sures the distance between the query point and the
observations, and h is the kernel bandwidth.

The distance function D(xi,q) is defined as

D(xi,q) =

√√√√ m∑
p=1

wp d(xip, qp)
2

where wp is the feature weight and d(xip, qp) is the
feature distance calculated as follows:

d(xip, qp) =
{

overlap(xip, qp) p nominal
diff (xip, qp) p real

overlap(xip, qp) =
{

0 if xip = qp

1 otherwise

diff (xip, qp) =
|xip − qp|

maxp −minp

Here (maxp −minp) is the range of feature p.
The regression coefficients biq are affected to a large

degree by the choice of feature weights wp and the ker-
nel bandwidth h, and by the kernel function K(·) to
a certain extent [1]. The problem reduces to finding
a good kernel, and the optimal values of the feature
weights and bandwidth to increase prediction accuracy.

3 Proposed Method
The optimal values of wp and h to be used in the es-

timation on the query point are found from the experi-
ence data by using leave one out cross validation [2, 3].
This involves the minimization of a cross validation
criterion, PRESS*, Penalized Sum of Squares of Pre-
diction Error. It was found that this criterion fails for
certain kernels and hence to compare the performance
of different kernels, we proposed a new minimization
criterion, STEPSS , STandard deviation penalized Sum
of Squares of Prediction Error, defined as:

STEPSS ≡ 1
n

1
s−i

n∑
i=1

(yi − ŷi,−i)2

where, s−i =

√√√√√ 1
n (n − 1)

n∑
i=1

n∑
j=1
j 6=i

(bij − b̄)2

b̄ =
1

n (n − 1)

n∑
i=1

n∑
j=1
j 6=i

bij

The regressor ŷi,−i of yi and the coefficients bij are
obtained from (1) and (2) by leaving out yi.

4 Experiments and Analysis
The characteristics of machines used for experiments

are shown in Table 1. The machines were loaded by
running a background task that could spawn child tasks
as required. A test application was created and exe-
cuted on the machines under various conditions of CPU
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Machine CPU num of CPU Memory CPU
num type CPU Hz size cache

1 PM 1 1GHz 758M 1024
2 P4 1 3GHz 256M 1024
3 P4 1 3GHz 512M 1024
4 P4 1 3GHz 1G 1024
5 P4 2 3GHz 512M 2048
6 AMD 2 2.4GHz 3G 1024

Table. 1 Machine Characteristics
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Fig. 1 Mean percentage error of 50 queries

load and free memory. The execution time of the ap-
plication for 280 different machine states was recorded,
out of which 50 values were randomly picked to repre-
sent the queries, leaving 230 states as training data.

For n = 50, 100, 130, 180, 230, for four different ker-
nels, the optimal feature weights and kernel bandwidth
were found by using a genetic algorithm to minimize
the STEPSS criterion. Using these values, the exe-
cution time for the 50 queries was estimated and the
prediction errors were calculated. The different kernels
used were:

Kernel Type Formula
Exponential quadratic K(D,h) = e−(D/h)2

Hyperbola quadratic K(D,h) = (h/D)2

Uniform K(D,h) =

{
1 D/h ≤ 1

0 D/h > 1
Linear fraction K(D,h) = 1/(1 + D/h)
The values of the mean percentage error for the 50

queries for each kernel type and at different values of n

are plotted in Fig. 1. Referring to Fig. 1, the following
conclusions can be drawn:
• Percentage prediction error in case of exponential

quadratic kernel is the smallest among all kernels
with a value of 6% at n = 230.

• As the value of n increases, the percentage pre-
diction error of the hyperbola quadratic kernel ap-
proaches the value of exponential quadratic kernel.

• Linear fraction kernel performs reasonably at
higher values of n, but the errors are still too large
to be practically acceptable.

Feature weights
Number of experiences

50 70 100 130 180 230
Kernel bandwidth 0.011 0.012 0.014 0.021 0.015 0.016
CPU HZ 0.08 0.05 0.67 0.45 0.59 0.37
CPU # 0.67 0.20 0.12 0.36 0.03 0.45
CPU cache 0.04 0.07 0.97 1.00 0.35 0.67
CPU load 0.93 1.00 0.77 0.94 0.70 0.63
Memory 0.72 0.01 0.02 0.13 0.12 0.04

Table. 2 Optimal kernel bandwidth & feature weights

Boundary
Boundary range

10% 5% 3% 1%
Lower 16.70 19.25 23.26 36.00
Center 4.64 4.45 4.78 5.28
Upper 3.80 4.66 6.32 8.25

Table. 3 Prediction error at boundaries

• Uniform kernel is the worst performing among all
the kernels with percent error close to 200%.

The optimal kernel bandwidth and feature weights
obtained with exponential quadratic kernel and the
STEPSS criterion are shown in Table 2. CPU load
and cache size are the most important features and re-
ceive large weights. The change in kernel bandwidth
with the increase in number of experiences is minimal.

To evaluate the prediction error at the boundaries of
the available data, we calculated the prediction error
for query points that fell close to the lower and upper
bounds of the CPU load. The results are shown in
Table 3. E.g., the mean percentage prediction error for
the queries that lie at the lower 1% of the CPU load
range is 36%, for the queries at the upper 1% is 8.25%,
and for the queries that lie in the rest of the 98% of the
range is 5.25%. This shows the limitation of regression
at the boundaries. We hypothesize that as more data
is collected at the boundaries, this error will reduce.

5 Conclusion
We presented a method to estimate the execution

time of tasks on machines using historical machine
state information. We proposed a new criterion for
cross validation in regression and evaluated its perfor-
mance for different kernel types. We found that our
technique has an average error less than 10%, and the
execution time can be predicted with reasonable accu-
racy even with a small number of experiences.
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