
A Knowledge-Based File Allocation Method for Real-Time Environments
Akiko Nakaniwa† Wesley W. Chu‡ Hiroyuki Ebara† Hiromi Okada†

† Kansai University
‡ University of California, Los Angeles

1. Introduction
Advances in network technology have made it possible to

provide various kinds of content services such as real-time video,
audio, etc., which have grown in interests. In distributed
networks, one of the most important problems is to efficiently
allocate content files to geographically separated database severs
in terms of cost, response time, reliability, and other constraints.
In such environments where the access patterns from users to
contents changes, such as the popularity of video contents, it is
also essential to dynamically reallocate files according to the
temporal load fluctuation. In this research, we consider the file
allocation problem under real-time response requirements.

Conventionally, the file allocation problem has been solved
using the 0-1 integer programming method[1][4][5][6]. However,
in this method, all the combination of files and servers are
considered as the search space and thus difficult for solutions in
real-time for large scale problems, even when using greedy
algorithms [4][5][6].

In this research, we propose a new knowledge-based file
allocation method for real-time environments. We apply several
file allocation rules for providing approximate allocation rather
than performing complete search for allocation. Moreover, we
apply A* algorithm for allocation, which is well-known for its
performance in terms of its good balances between the accuracy
of the solution and the computing time [3]. We carry out the
performance comparison with the conventional 0-1 integer
programming method and the results show that our proposed
rule-based A* algorithm drastically reduce the computing time.

2. Optimal File Allocation Problem

2.1 Problem Definitions
In distributed networks, one of the most important problems is

how to assign files to servers that are geographically separated.
Files must be stored in at least one of the servers, as well as be
available for any users. It will be preferable to allocate copies of
important or popular files to several servers to reduce the
communication cost and response time. However, the duplicated
storage of the same files in the system also introduces some
problems, such as the trade-off between the communication cost
for file updates and the additional storage cost, the overhead of
keeping the data consistent, and so on. Also, there are trade-offs
between cost, response time, and reliability. We should consider
the optimal file allocation problem in view of these problems.

In this research, we solve the optimal file allocation problem
such that the operating cost (communication and update costs) is
minimized subject to a set of constraints, such as the storage
capacity of each node, the availability of files and response time
requirements of the processing task. Since the storage costs has
reduced significantly in recent years and much lower than the
communication cost, it can be considered negligible.

2.2 System Model
Let us consider a distributed network that consists of n nodes

and l links. Each node is denoted by Ni and each link between
nodes Ni and Ni’ is denoted by Li,i’. Let the storage capacity of a
node Ni be Bi and the link capacity of a link Li,i’ be Ci,i’. The
number of hops between nodes Ni and Ni’ is denoted by ei,i’ and
the shortest distance between nodes Ni and Ni’ can be calculated
and is denoted by hi,i’. The number of distinct files is m, and
each file is denoted by Mk. The size of a file Mk is denoted by Fk.
Each node can store these files as long as the total size of files
does not exceed the storage capacity. The number of replicated
copies of a file Mk is rk. The access frequency for a file Mk at a
node Ni is denoted by aik and the update probability after each
access is Pu. We also assume that the update file size for a file Mk
is fk. When users access each file, there is a response time
requirement for each query and the time requirement for
accessing file Mk at node Ni is denoted by TRik. Moreover, the
service rate of each node and the failure rate of each node and
link is denoted by

iµ ,
iλ ,

',' iiλ respectively. This information is

useful to estimate system reliability and response time.

2.3 0-1 Integer Programming Method
File allocation problems in distributed networks have been

solved using the 0-1 integer programming model[1][4][5][6] as
follows.

In the 0-1 integer programming method, we define 0-1
variables on the allocation of files.

The optimal file allocation problem is formulated as a 0-1

integer programming model by using these 0-1 variables. In this
research, the objective function is the cost and the constraints is
the response time and reliability. Then, the cost, response time,
and reliability are formulated using Xik respectively.

The advantage of this method is the accuracy of its solutions.
In [6], it is shown that the average accuracy is less than 0.3%
even when using approximate methods (In the case that the
number of nodes is 5 and the number of distinct files is 4). On
the other hand, in this method, the search space consists of all the
combination of files and nodes, and thus as the number of files
and nodes increases, the computing time increases exponentially.
Therefore, when using exact methods such as the exhaustive
search and the branch and bound, which can both find the exact
optimal solution, these methods are only applicable for small-
scale systems. Even when using approximate methods such as the
greedy algorithm and the tabu search, it is impossible to solve the
file allocation problem in large-scale systems during real-time.

=
)(otherwise 0

) node in the stored is file (the 1 ik
ik

NM
X

　

35

L-015

FIT2004（第3回情報科学技術フォーラム）

3 Knowledge-Based File Allocation Method
In this section, we propose a knowledge-based file allocation

algorithm for time-critical environments.

3.1 Rule-Based Selection of File Allocation Plans
Our heuristic algorithm is characterized by rule-based pruning

of the original search space. This algorithm prunes the original
search space by using a set of rules. As a result, only a subset of
file allocation plans are searched, rather than all the possible file
allocation plans.

The following is a set of rules that is used in this research for
reducing the original search space:

(R1)Select the node to allocate the file such that it has the

highest reliability

(R2)Select the node to allocate the file such that it has the

most critical time requirement for this file

(R3)Select the node to allocate the file such that it has the

highest access frequency for this file

We apply these rules to determine each file allocation plan.
The candidate file allocation plans are the sets of nodes that

satisfy one or more of these rules. We may select several nodes
for each rule, for example, for the third rule we can select not
only the node that has the highest access frequency, but also the
second highest one, the third highest one, … , etc. In this case,
we need to determine how many cases we allow for each rule.
Each file allocation plan is the combination of the nodes that are
selected based on these rules.

In the rule-based file allocation method, the more file
allocation plans, the more computing time will be needed. It is
important to limit the number of file allocation plans. Several
ways can be considered to limit it. In this research, we define the
cost as the criterion for that. We first create all possible file
allocation plans for each file, and then select the limited number
of file allocation plans based on the criterion. The appropriate
number of file allocation plans to select should be determined in
considering the trade-off between the quality of the solution and
the computing time.

3.2 A* Algorithm
Our heuristic algorithm applies an A* algorithm [3] to search

for the optimal solution in the state-space search tree, which
consists of the set of states selected by the rules. The A*
algorithm prunes the expanded tree more effectively than the
Branch and Bound algorithm because at each step it also uses an
estimation of the cost incurred in getting from the step to the
final solution of the problem.

The optimal file allocation problem is formulated as a state-
space search problem. Each state description is denoted by a
node in the state-space search tree. A problem starts from the
initial state s0 and expands states one by one (expanding a state s
means generating all immediate successors of each node). In this
algorithm, the numerical value f(s) is assigned to each state,
consisting of two terms:

f(s) = g(s) + h(s)

where g(s) is the known cost incurred in getting from s0 to s, and
h(s) is a heuristic function that estimates the additional cost that
will be incurred in getting from s to a final state (i.e., the solution
of the problem.) To choose which state to expand next, the state

s having the smallest value for f(s) is always selected for node
expansion. The performance of A* algorithm depends on the
choice of h(s). The better this function estimates the cost of the
final state, the faster the algorithm. This brings up the issue of
admissibility of heuristic functions. The heuristic function h(s) is
admissible if it always returns a lower bound on the additional
cost that will be incurred in getting from s to a final state. If h(s)
is admissible, then the A* algorithm is guaranteed to find a final
state sF (leaf node in a state space search tree) such that the cost
of getting from s0 to sF is minimal among all final states.

3.3 Applying A* Algorithm to Optimal File
Allocation Problems

To formulate the optimal file allocation problem as a state-
space search problem, each possible file allocation plan is
defined as a state in the search space. Let all file allocation plans
for each file Mk be Pk = {Pk,1, Pk,2, . . . , Pk,xk}, where Pk,j is the jth
allocation plan for the file Mk and xk is the number of possible
allocation plans for the file Mk. Each allocation plan Pk,j is a set
of nodes and includes all nodes that store an original or a
replicated copy of the file Mk in this plan. That is Pk,j =
{Nj,1,Nj,2, . . .Nj,n(jk)} where Nj,l is the lth node and n(jk) is the
number of the nodes in this allocation plan. The state-space is
constructed as follows:

1. Every state s is an m-tuple <P1,j1, P2,j2 , . . ., Pm,jm>, where

for each k, either Pk,jk ∈ Pk (in which case s suggests that
a plan Pk,jk is used to allocate a file Mk), or else Pk,jk =
NULL (in which case s does not suggest any plan for a
file Mk yet). The cost of s, denoted by g(s), is the
operating cost required when allocating files according
to the allocation plans in the state s.

2. The initial state is the state s0 = <NULL, NULL,

… ,NULL>, and the states sF = <P1,j1, P2,j2 , . . ., Pm,jm>
with Pk,jk ≠ NULL, for all k, are the final states.

3. Given a state s = <P1,j1, P2,j2 , . . ., Pm,jm> , let

4. Let the state s have at least one NULL entry and a =

next(s), then the immediate successors of s include every
state s’ = <P1,j’1, P2,j’2 , . . ., Pm,j’m> satisfying the
following properties:

The cost of the transition from s to s’ is the additional
cost needed to process the new plan Pa,j’a, given the
(intermediate or final) results of processing the plans in
the state s.

{ } { }
 otherwise. 1+

0≠NULL=if NULL=min=)(,,

k
PkPksnext kk jkjk

.<=<for NULL=

;∈

;<<=1for =

',

',

,',

mkaP

P

akPP

k

a

kk

jk

ja

jkjk

aP

36

FIT2004（第3回情報科学技術フォーラム）

3.4 Rule-Based A* Algorithm
In our heuristic algorithm, we first create the state-space

search tree which consists of the set of states selected by the rules,
and then search this search tree in a similar way as the A*
algorithm.

In Fig.1, we show an example of the state-space search tree.
Each node in the search tree corresponds to each file allocation
plan determined by rules. Here are the steps of our heuristic file
allocation algorithm:

1. Create the set of file allocation plans for each file based

on rules.

2. Create an array OPEN and insert the initial state s0 into

OPEN as the first factor.

3. Repeat the procedures from 3.1 to 3.3 in order of the file
size from largest to smallest until the file allocation for
all files is determined.

3.1 Remove from OPEN the state s that has the

smallest value for f(s). If there is more than one
such node, then we select the one at the deepest
level.

3.2 Generate the successor states of s, and insert them

into OPEN.

3.3 Check if the restrictive condition of storage

capacity is satisfied. If not, remove it from OPEN.

4. Check if all of the restrictive conditions are satisfied. If
so, return s as the optimal solution.

Fig.1 An example of the state-space search tree
(# of distinct files = 3, M1>M2>M3)

3.5 Evaluation Function and Constraints

3.5.1 Evaluation Function
As in the A* algorithm, our heuristic file allocation algorithm

uses the evaluation function for a state s. Since the objective
function is the operating cost, we evaluate g(s) and h(s) by the
operating cost function.

The operating cost consists of the communication cost Ct and
the update cost Cu. Here, Ct(hi.j) is the communication cost
coefficient, which depends on the number of hops between nodes,
and Cu is the update cost coefficient which is common for all
files. The cost function of a jth file allocation plan for a file Mk is
as follows:

Here, jmin(i) is the index of the node Njmin(i) which has the minimum
number of hops from the node Ni among all the nodes included
in the jth allocation plan Pk,j. Using this cost function, the
evaluation function is formulated.

3.5.2 Constraints
In the optimal file allocation problem, we also have a set of

constraints, such as storage capacity, reliability, and query
response time.

1. Storage capacity

Each node Ni can store files as long as the total size of files
does not exceed the capacity of the node, that is

2. Reliability (Availability)

Let Rk be the reliability (availability) of the file Mk. Here, Rn
denotes the reliability of the node and Rc denotes the
reliability of the communication channel. Based on the
failure rate of each node and link, we can estimate Rn and
Rc. We estimate Rn to be the average reliability of all nodes
that store the file Mk. On the other hand, Rc is estimated to
be the product of the reliability of the channels used to
access the file Mk. Let Rmin be defined as the minimum
required reliability, so that the reliability Rk has to be
greater than Rmin for all k, i.e., for all the files. According to
[2], The availability of the file Mk is:

3. Query response time
Based on network information such as the network
topology, the access rate, and the update rate, we can
estimate the traffic at each node as well as the offered
traffic to the network. Let γ denote the total offered traffic
to the network and

',iiα denote the total traffic on the link

Li,i’. Moreover, we assume that '/1 µ is the average file size,
tp is the propagation delay, and tn denotes the nodal
processing time, which is assumed to be the same for all
nodes. This information enables us to estimate average
network response delay. The query response time T consists
of the network response delay Tn and the query processing
delay tq. Let Tmax be defined as the maximum allowable
time, and then the query response time T has to be less than
Tmax. Tmax is given based on the response time requirement
for each query TRik. If the query response time is greater
than Tmax, then we need to increase the replication numbers
of certain files that cause traffic to bottleneck to different
nodes. According to [2], query response time T = 2×

() ()()∑
1=

,, +=
)min(

n

i
kkuuikkjitikjk rfCPaFhCaPC

ik

∑
1)(

1=
,)(=)(

snext

k
jk k

PCsg

[]∑
)(=

,)(min=)(
m

snextk
jkj k

k

PCsh

i
Nk

k BF
i

<= ∑
 node in the stored files theAll:

()[] min>=11= RRRRR kr
ncnk

s = (NULL, NULL, … ,NULL)

35

65

25 65

5

g(s)=25 g(s)=3
5

g(s)=5

h(s)=10 h(s)=30 h(s)=20

45

50

g(s)=50 g(s)=45
h(s)=15 h(s)=10

40

47

g(s)=30
h(s)=10

42

g(s)=45 g(s)=42

level for file M1

s = (P11, P21,P3j3)
f(s) = 42, h(s) =

Constraints is satisfied
-> Optimal Solution

s = (P11, NULL,NULL)
f(s) = 35, h(s) = 10

g(s)=40
h(s)=10

g(s)=47

s = (P11, P22, NULL)
f(s) = 40, h(s) = 10 level for file M2

level for file M3

37

FIT2004（第3回情報科学技術フォーラム）

network response delay Tn+ query processing delay tq, that
is:

4. Performance Evaluations
We evaluate the performance of our proposed rule-based A*

algorithm in comparison with the conventional 0-1 integer
programming method. Here, we consider the system parameters
as follows. The number of nodes is 5 to 30 (n = 5 – 30) and the
capacity of each node is 100 to 200[Gbyte] (Bi = 100000 -
200000). Also, there exist 10 to 200 types of files (m = 10 - 200),
and the size of each file is 0.5 to 1[Gbyte] (Fk = 500 - 1000). The
average access frequency is 1 to 50[/sec] (aik = 1 – 50) and the
update probability is 0.1 (Pu = 0.1).
 The performance comparison in terms of the computing time
vs. the number of nodes and distinct files is shown in Figures 2
and 3. We note that in both figures, our proposed rule-based A*
algorithm can reduce the computing time drastically.

The accuracy of the solution in terms of operating cost vs. the
access frequency is shown in Figure 4. While our proposed
method reduces the computing time, the operating cost increases.
However, we can improve the operating cost of our proposed
method by choosing the number of selected file allocation plans.
As mentioned above, we can determine the number of selected
file allocation plans by rules in considering trade-off between the
accuracy of solution and the computing time.

5. Conclusions
In this research, we have proposed a knowledge-based file

allocation method for real-time environments. To reduce search
time for solution when environment changes, we have developed
file allocation rules as well as applied an A* algorithm to search
for file allocation more efficiently. Our study reveals that the
proposed rule-based A* algorithm drastically reduces the
computing time, in comparison with the conventional 0-1 integer
programming method.

References
[1] Wesley. W. Chu, Optimal File Allocation in a Multiple

Computer System, IEEE Trans. Comput., Vol.C-18, No. 10,
October 1969, pp.885-890.

[2] Wesley W. Chu, Distributed Data Base Systems, in Vick
and Ramamoorthy(Ed.), Handbook of Software Engineering,
14 (Van Nostrand Reinhold, 1984) pp.283-329.

[3] Y.K.Kwok, K.Karlapalem, I.Ahmad and N.M.Pun, Design
and Evaluation of Data Allocation Algorithms for
Distributed Multimedia Database Systems, IEEE Journal on
Selected Areas in Communications, Vol.14, No.7,
September 1996.

[4] A. Nakaniwa, M. Onishi, H. Ebara, and H. Okada, “File
allocation in distributed multimedia information networks,”
Proc.of IEEE Globecom ’98, pp.740-746, Nov. 1998.

[5] A. Nakaniwa, M. Onishi, H. Ebara and H. Okada,
“Sensitivity Analysis in Optimal Design for Distributed File
Allocation Systems,” IEICE Trans. Commun., vol.E84-B,
no.6, pp.1655-1663, Jun. 2001.

[6] A. Nakaniwa, J. Takahashi, H. Ebara and H. Okada,
“Reliability-Based Mirroring of Servers in Distributed
Networks”, IEICE Transactions on Communications,
Vol.E85-B, No.2, pp.540-549, 2002.2.

qnp
iiii

n

i

n

ii

ii ttt
αCµγ

α
T +++

'
1

2=
',',

1

1= 1+='

',∑∑

0.01

0.1

1

10

100

1000

10000

5 10 15 20 25 30

of nodes

c
o
m

p
u
ti

n
g

ti
m

e
 (
s
e
c
)

0-1

rule-based

Fig.2 Computing time vs. # of nodes

0.01

0.1

1

10

100

1000

10000

0 50 100 150 200

of distiinct files

c
o
m

p
u
ti
n
g

ti
m

e
 (
se

c
)

0-1

rule-based

Fig.3 Computing time vs. # of distinct files

Fig.4 Accuracy of solutions

0

2000000

4000000

6000000

8000000

10000000

12000000

0 10 20 30 40 50

Access frequency (/sec)

O
pe

ra
ti
ng

 c
o
st

0-1

rule-based

38

FIT2004（第3回情報科学技術フォーラム）

