LJ-012 画像のエッジ劣化を抑制するベクトル量子化符号帳設計 Vector Quantization Codebook Design Restraining Edge Degradation of Images

滝沢 寛之†	三浦健‡	小林 広明†	
Hirovuki Takizawa	Takeshi Miura	Hiroaki Kobavashi	

はじめに 1.

ベクトル量子化 (Vector Quantization, VQ) は,高圧 縮率の画像圧縮を実現するための手法として盛んに研究 されている [1,2]. 一般的に, 画像を N 個の画像ブロッ クに分割し , それらを M 個の代表ベクトル (符号語) で 近似することにより, VQ による画像のデータ圧縮が達 成される.したがって,この近似によって生じる画質の 劣化を最小にする符号語の集合(符号帳)の設計が重要 である.

各画像ブロックをその輝度の平均値と残差ベクトルに 分解し、その残差ベクトルを VQ することにより、画像 ブロックを直接 VQ する場合と比較して復元画像の視覚 的画質が向上することが知られている[1,2].画像ブロッ クの平均値は,残差ベクトルとは独立にスカラ量子化さ れる.このような VQ は平均値除去 VQ と呼ばれる.本 稿では平均値除去 VQ のための符号帳設計手法について 考察する.

画質の劣化を評価するための測度として,ベクトル(こ こでは各画像ブロックの残差ベクトル)とそれに対応す る符号語との距離の平均自乗誤差 (Mean Squared Error, MSE), あるいは MSE に基づいたピーク信号対雑音比 (Peak Signal to Noise Ratio, PSNR) が一般的に用いら れる.しかし,画質劣化を評価する指標として考えた場 |合 , MSE は必ずしも優れた測度ではない [3] . MSE を 最小にする符号帳を用いて画像圧縮したとしても,その 圧縮に伴う劣化が人間の視覚には顕著に感じられる可能 性がある.

VQ による典型的な画質劣化の一つとして,画像内の エッジの劣化が挙げられる [2]. エッジを含まない部分 の画質劣化と比較して,エッジ部分に集中的に起こる画 質の劣化は人間の目に顕著に感じられる.

平均値除去 VQ では,エッジ部分の残差ベクトルのノ ルムが大きくなるため,その近傍に符号語を配置するこ とによってエッジ劣化抑制が期待できる [2]. しかしな がら従来の方法では符合語の配置を実際の画像を考慮し ない一定の確率分布に基づき行なっていたために,エッ ジ劣化抑制効果が不十分であった.本稿では,残差ベク トルのノルムの実際のヒストグラムを算出して符号帳設 計に利用し,出現頻度の低く,しかもノルムの大きな残 差ベクトル近傍に符号語を配置することによるエッジ劣 化抑制効果を評価する.

2. Weighted Centroid Neural Network

エッジ部分では画素値の変化が激しいため,正確な近 似のためには数多くの符号語が必要となる.しかし,一 般的な画像中でエッジ部分が占める割合は大きくないた め,エッジ部分での誤差が MSE に与える影響は小さい.

‡東北大学大学院情報科学研究科

中村 維男‡ Tadao Nakamura

このため, MSE の最小化のみを考慮して符号帳を設計 した場合には,エッジ部分には符号語が割り当てられな い可能性が高く,その結果としてエッジの画質劣化が顕 著となる.

平均値除去 VQ では , 残差ベクトルのノルムが非エッ ジ部分と比較してエッジ部分で大きな値となる.Park らは、ノルムの大きい残差ベクトルがエッジを含む画 像ブロックの残差ベクトルであると仮定し、その近傍に 符号語を割り当てるために Weighted Centroid Neural Network(WCNN) を提案した [2].

時刻 (t-1) において符号語 y_i によって近似されてい た残差ベクトル z_n が,時刻tでは別の符号語 y_i によっ て近似される時, WCNN は y_i を勝者, y_i を敗者とし, 式(1)にしたがって各符号語を更新する.

$$\mathbf{y}_{j}(t+1) := \mathbf{y}_{j}(t) + \frac{P^{-1}(r_{n})}{\sum_{l \in S_{j}} P^{-1}(r_{l}) + P^{-1}(r_{n})} \\
 \cdot \{\mathbf{z}_{n} - \mathbf{y}_{i}\} \\
 \mathbf{y}_{i}(t+1) := \mathbf{y}_{i}(t) - \frac{P^{-1}(r_{n})}{\sum_{l \in S_{i}} P^{-1}(r_{l}) - P^{-1}(r_{n})} \\
 \cdot \{\mathbf{z}_{n} - \mathbf{y}_{i}\}$$
(1)

ここで, $r_n = \|\boldsymbol{z}_n\|$ であり, S_i は \boldsymbol{y}_i が最近傍となる残 差ベクトルの集合である. 残差ベクトルのノルム r の確 率分布 P(r) は式 (2) で近似される.

$$P(r) = \begin{cases} \frac{\sigma_r}{\sigma_z^k} e^{-\sigma_r^2/2\sigma_z^2} & \text{for } 0 \le r < \sigma_r \\ \frac{r}{\sigma_z^k} e^{-r^2/2\sigma_z^2} & \text{for } \sigma_r \le r < 2.5\sigma_r \\ 0.299e^{-0.04r} & \text{for } 2.5\sigma_r \le r < 10\sigma_r \\ 0.299e^{-0.4\sigma_r} & \text{for } 10\sigma_r \le r \end{cases}$$
(2)

ここで, σ_z および σ_r はそれぞれ z の要素および r の 標準偏差である.ノルムrが大きい残差ベクトルの確率 P(r) は小さくなるため,勝者 j が残差ベクトルに近づ く割合が大きくなる.その結果,ノルムが大きい残差べ クトルの近傍に符号語が割り当てられる.

ヒストグラムを用いたエッジ劣化抑制 3.

残差ベクトルのノルムの大きさ rを横軸とした,実際 の画像 (Mandrill と APC) の残差ブロックのヒストグラ ムを図1に示す.この図から分かるとおり,実際の画像 のヒストグラムは式 (2) (図中の WCNN) と大きく異な る場合がある.式(2)と比較して, Mandrill にはノルム の大きい残差ブロック,すなわちエッジが多く含まれて おり, APC には比較的エッジが少ない. そこで,本稿 では実際のヒストグラムを式(3)により作成し,その情 報に基づいて符号帳を設計する。

$$P(r) = 1/N_m \quad \text{for } m-1 \le r < m \tag{3}$$

☑ 1: Distribution histogram of residual vectors

ここで, N_m は $m-1 \le r < m$ となる残差ベクトルの個数 であり , 本稿では $m=1,2,\ldots,512$ としてヒストグラム を作成する.以下,式(2)の代わりに式(3)を使うWCNN を, WCNN(Weighted Centroid Neural Network with Histogram, WCNN/H) とする.

評価実験 4.

WCNN/H のエッジ劣化抑制効果を評価するため, WCNN および Centroid Neural Network(CNN) [2] と の比較実験を行なった.ここで, CNN はエッジ劣化の 抑制を考慮しない WCNN である.画像には Mandrill と APC を用い,符号帳の大きさを 32,64,128 と変化さ せて実験を行った.

復元画像の PSNR を表1に示す. 文献 [2] でも述べら れているとおり、ノルムが大きい残差ブロック近傍に符 号語を配置することにより,画像全体に対する誤差は増 大する.このため,画像全体の PSNR という観点では, エッジ劣化抑制を考慮しない CNN の復元画像が最も優 れている.WCNNとWCNN/Hを比較すると,WCNN の方が PSNR が高くなった.

図 2 は, APC の残差ベクトルをノルム r に応じて分 類し,r 毎に PSNR を測定した結果である.ノルムが大 きい画像ブロックに関して WCNN/H の PSNR が最も 高くなっていることから,WCNN/H が最も忠実にエッ ジを復元していることが分かる . 各手法の復元画像の 一部を拡大したものを図3に示す.他の手法では特に 星印のエッジ部分が劣化してぼやけているのに対して, WCNN/H では比較的忠実にエッジを復元できている.

まとめ 5.

本稿では,残差ベクトルのノルムのヒストグラムを用 いて符号語を割り当てる WCNN/H を考案し, エッジの

表 1: Peak signal to noise ratio of restored images

image		CNN	WCNN	WCNN/H
APC	(32)	33.7	33.0	32.5
APC	(64)	34.3	33.6	33.3
APC	(128)	35.0	34.3	34.1
Mandrill	(32)	23.9	23.7	23.3
Mandrill	(64)	24.5	24.3	24.0
Mandrill	(128)	25.1	24.9	24.7

☑ 2: Peak singanl to noise ratio along r (APC)

(c) WCNN

☑ 3: Restored images

画質劣化を抑制する効果を評価した.比較実験の結果, WCNN/H は従来の WCNN よりもエッジの劣化を抑制 できることが明らかになった.しかし,画像全体のPSNR は WCNN よりも低下する場合があることが分かった. 平均値除去 VQ においても,画像全体の PSNR が低下 すると視覚的に顕著なブロック歪みが発生する.PSNR とエッジの画質劣化抑制を適切に調整し,主観的評価に よる画質劣化を最小にする手法の確立が今後の課題で ある.

参考文献

- [1] A. Gersho and R. Gray: "Vector quantization and signal compression", Kluwer Academic Publishers, Norwell, MA (1992).
- [2] D.-C. Park and Y.-J. Woo: "Weighted centroid neural network for edge preserving image compression", IEEE Transactions on Neural Networks, 12, 5, pp. 1134–1146 (2001).
- [3] M. Miyahara, K. Kotani and R. Algazi: "Objective picutre quality scale (PQS) for image coding", IEEE Transactions on Communications, 46, 9 (1998).