LA-002

固体酸化物燃料電池における破壊ダイナミクスの可視化法 Visualization Method for Fracture Dynamics in Solid Oxide Fuel Cell

福井健一[†] 佐藤 一永[‡] 水崎 純一郎[‡] 斉藤 和巳[§] 沼尾 正行[†] Ken-ichi Fukui Kazuhisa Sato Junichiro Mizusaki Kazumi Saito Masayuki Numao

1. はじめに

燃料電池,その中でも固体酸化物燃料電池 (SOFC) は,既存の発電システムと比較して高い発電効率を実 現できる可能性があり注目を集めている.SOFC の実 用化に向けて長期健全性の向上は重要な課題であるが, SOFC は 800~1000C° もの高温環境で運転をするた め,物理的,または酸化還元反応による化学的な劣化 が生じる.これまでは電気化学的手法で劣化の程度が 評価されてきたが,劣化要因を全て含んで評価する為, 要因の特定は困難であった.

これに対し近年,物理的損傷に関しては,損傷によ る微弱な弾性波を計測するアコースティック・エミッ ション (AE) 法で評価できる可能性が示された [1].本 研究は、この計測成果を基にし,大規模かつ多様な AE 信号に対して機械学習技術・データマイニングを適用す ることで,損傷種類の推定,破壊メカニズムの解明,健 全性診断技術の開発を目指している.本稿では,SOFC 損傷実験により計測された AE データに対して,以下 の(1)~(3) により物理現象として解釈可能な破壊過程 を視覚的に把握できることを確認した.

(1) AE 波の自動抽出

定常状態のノイズからアウトブレークしている AE 信号の期間を自動抽出する. Kleinberg のバース ト抽出法 [2] を応用し, AE 信号のバースト期間 およびバーストレベルを抽出し,同時にそれらを AE 波の特徴量とした.

(2) AE タイプの分類

破壊モードや破壊エネルギーにより異なる AE タ イプをクラスタリングにより分類する.目視によ る分類ラベルと比較し,(1)で抽出したバースト レベルに基づく特徴量による分類精度を評価した.

(3) 破壊ダイナミクスの可視化

我々が提案している Sequence-basd SOM(自己組 織化マップ)[3] を用いて,時間的に変化する AE タイプの増減,発生・消滅の傾向を直感的に把握 可能なマップを生成した.

2. SOFC における破壊と計測

SOFC は燃料極(アノード),電解質,空気極(カ ソード)の3層のセラミクスから成る.また,我々の 実験装置では,電解質とアルミ管の間を塞ぐためにガ ラスシールを用いている.セラミクスは熱により膨張 するため,電解質-電極間,電解質-ガラスシール間

図 1: SOFC 模擬作動試験後の (a) 電解質表面, (b) 電 解質およびカソード断面の写真

図 2: 信号生成確率関数 (左),バースト抽出法の概念 図 (右)

でせん断応力が生じ,その結果,き裂や材料間のはく 離が起こる(図1).

このような破壊現象を非破壊に計測する方法にア コースティック・エミッション (AE) 法がある.アコー スティック・エミッションとは、材料の変形、割れの進 展が生じた際に放出される弾性波のことである. AE 法は、非破壊検査法として様々な建造物を対象に用い られてきた [4].

3. バースト抽出法

従来,波形の特徴量として,最大振幅,分散,尖度, 周波数などが用いられてきたが,新たな観点として Kleinbergのバースト抽出法を応用した.これにより, 複雑な波形の外形を大まかに捉えることができる.

Kleinberg は文書群の時系列からのトピック抽出法 として提案している.この方法では、文書生成モデル を指数分布に従うとして、各状態(バーストレベル) をパラメータの異なる指数分布に対応させた確率オー トマトンを考える.また、連続したバースト期間が得 られるように状態遷移コストを導入している.現在の 状態であるためのコストと状態遷移コストを合わせた 最適な状態遷移系列を、隠れマルコフモデル(HMM) でよく用いられる Viterbi アルゴリズムによって求め ることで、バーストレベルの階層構造を得る.この方 法を AE 信号に応用する場合、平常状態の信号生成モ デルを正規分布から生成されると仮定し、各状態は分

[†]大阪大学産業科学研究所

[‡]東北大学多元物質科学研究所

[§]静岡県立大学経営情報学部

散の異なる正規分布に対応させる (図2参照).

まず,時刻 t における AE 信号の値を $z_{t}:(t = 1, ..., n)$,第 j 状態における信号生成確率関数を $f_j(z):(j = 0, ..., v)$ とする.本稿では, $f_j(z) = (\sqrt{2\pi\sigma_j})^{-1}\exp\{-(z-\mu)^2/(2\sigma_j^2)\}$ とした.ここで, μ は全 AE 信号の平均値であり, σ_j は第 j 状態に対応 する分散パラメータである.定常状態 (j = 0)の σ_0 は全信号の分散値で与え,バースト状態 $(j \ge 1)$ では $\sigma_j = s^j\sigma_0$ と与える.s > 1はバーストレベルの解像 度を調節するパラメータである.バースト抽出アルゴ リズムを次に示す.そして,最終的に得られるバース トレベル (最適状態)の系列中で,連続するバースト期 間 $(state^*(t) > 1)$ を有効な AE 波として抽出する.

Step 1. 状態コストを初期化する. $Cost_j(0) = 0$ (j = 0), $Cost_j(0) = \infty$ ($j \ge 1$).

Step 2. t = t + 1.

Step 3. 全ての状態 $j = 0, \dots, v$ に対して次式により状態コスト $Cost_j(t)$ を求める.

$$Cost_j(t) = -\ln f_j(z_t) + \min_{0 \le l \le v} (Cost_l(t-1) + \tau(l,j))$$

ここで、jは時刻tにおける状態を表し、lは時刻 t-1における状態を表す.また、 $\tau(l,j)$ は次式 で与えられる状態lからjへの状態遷移コストで ある.

$$\tau(l,j) = \begin{cases} (j-l)\gamma \ln n & \text{if } j > l \\ 0 & \text{otherwise.} \end{cases}$$

ここで、 $\gamma > 0$ は状態遷移コストの影響パラメー タである.

- **Step 4.** *t* = *n* まで Step 2 と 3 を繰り返す.
- **Step 5.** Viterbi アルゴリズムによって最適な状態 遷移系列を求める.最後の信号 t = n に最小の状態コストを与える状態 $state^*(n)$ からスタートし, 時刻 t の最適状態 $state^*(t)$ を与えたひとつ前の 時刻 t-1 の状態 $state^*(t-1)$ を最適状態として, t = 1 まで辿る.

4. 時系列可視化

大規模な AE 信号を自動的に分類し,視覚的に全体 像を把握することができれば現象を理解するのに有用 である.このような方法として,ニューラルネットワー クの教師なし学習法のひとつである Kohonen の自己 組織化マップ (Self-Organizing Map: SOM)[5] がある. 通常 SOM は,定義された2次元格子上に入力データ間 の類似度をなるべく保存するような射影を得る.我々 は、2次元格子上に時系列軸を導入し、クラスタの時系 列変化を可視化する SBSOM を提案した (図3参照).

本稿では、AE 波の特徴ベクトルとして、第3章で 抽出される AE 波に含まれる各バーストレベルの出 現頻度を用いた.すなわち、N 個の v-次元ベクトル $\mathbf{x}_n = (x_{n,1}, \cdots, x_{n,v})$ として、 $x_{n,j} = o_j / \sigma_j$ で与える.

図 3: Sequence-based SOM の概念図. 学習過程 (左), 学習結果 (右). データに予め何らかの方法でラベルが 付与されている場合,代表クラスにより可視化される.

図 4: SOFC 損傷試験装置概要 (断面図)

ここで, o_j は第jバーストレベルの出現回数, σ_j は 全 AE 波の o_i の標準偏差を表している.

SOM は入力層と可視化層の 2 層から成り,可視化 層ニューロンは座標 $\mathbf{r}_j = (\xi_j, \eta_j), (j = 1, \dots, M)$ に配 置されているとする.各ニューロンには参照ベクトル $\mathbf{m}_j = (m_{j,1}, \dots, m_{j,v})$ が定義されている.SOM の学 習は参照ベクトルを入力ベクトルに近づけるように更 新する.その時,参照ベクトル更新の大きさは,入力 ベクトルに対する再適合ニューロンからの距離で定義 される近傍関数によって重み付けされる.SBSOM で は,最適合ニューロンの定義を次式のように修正する.

$$c(\mathbf{x}_n) = \arg\min_{j} \psi(n, \xi_j) ||\mathbf{x}_n - \mathbf{m}_j||.$$
(1)

 $\psi(n,\xi_j)$ は可視化層のトポロジーに時系列の順序関係 を与える関数であり、次式により与えた.

$$\psi(n,\xi_j) = \exp\left(w|\xi_j - n\frac{K}{N} - \frac{1}{2}|\right).$$
(2)

ここで, K は ξ_j の最大値を表し, w は時系列の順序関 係の影響力を調節するパラメータである.また, w = 0のとき,通常 SOM になることに注意しておく.

5. 検証実験

5.1 SOFC 損傷実験

本研究に用いた SOFC 損傷試験の概略図を図4に示 す. 電解質には (CeO₂)_{0.8}(SmO_{1.5})_{0.2}, アノード(正

図 5: 温度履歴と AE エネルギー

表 1: AE タイプの分類区分および分類された AE 波数

AE タイプ	AE 波形	破壊モード	数
Type A	連続型	せん断	108
Type B	中間型	せん断	326
Type C	突発小型	開口	234
Type D	突発型	開口	152
Type E	突発連鎖型 I	開口	112
Type F	突発連鎖型 II	開口	33
不明	-	-	469
Total			1434

極)材には Ni – 20SDC, カソード(負極)材には La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O₃を用いている.単セルは同心 円状の Al₂O₃管によって挟まれ,上下に2室のガス環 境がある.電解質と Al₂O₃管の間にはガラスシールで シールドが施されている.AE センサーは PAC 社製 UT-1000(広帯域型)を用いた.また,損傷試験の温度 履歴と計測された AE エネルギーを図5に示す.ガラ スシールの融点はおよそ 550C°である.

5.2 AE 波の検出と AE タイプ

バースト抽出において,最大バーストレベルは 5, バーストレベルの解像度パラメータはs = 1.5,状態 遷移コストの影響パラメータは $\gamma = 100.0$ に設定した. その結果,1434 個の AE 波が検出された.

本研究では教師なし学習を用いているが,バーストレベルに基づく特徴量による分類性能を検証するため,抽出された AE 波を外形によって目視で Type A~Fの6 種類のタイプに分類し正解ラベルとした. AE タイ

time (10^{-6}sec)

図 6: 各種 AE タイプの代表例

表 2: *k*-means クラスタリング (*k*=10) による AE タ イプの分類性能比較 (50 回の平均値)

	MiP	MiF	Entr.	Num.		
Burst	0.7846	0.7690	0.0997	5.8200		
(SD)	(0.1124)	(0.1101)	(0.0161)	(0.8646)		
Basic	0.6377	0.4895	0.1158	4.7800		
(SD)	(0.0921)	(0.0729)	(0.0171)	(0.7560)		
Spec.	0.4670	0.4316	0.0990	2.9400		
(SD)	(0.0667)	(0.0619)	(0.0147)	(0.4200)		

プの分類区分と分類された AE 波数を表1に, 各タイ プの代表例を図6に示す.

一般に、AE 波形は破壊モード(開口、せん断)に より突発型と連続型に大別されることが知られている [4]. Type A は、せん断モードによるもので振幅が小 さく連続型 AE の典型である. Type C は、始め振幅 が大きく徐々に減少していく突発型 AE である. Type B は Type A と C の中間型である. Type D は Type C よりも振幅の大きい突発型 AE である. Type E は、 Type D の突発型 AE が連鎖して起こった AE 波であ り、Type F も Type D の連鎖であるが、Type E より も間の期間が長い AE 波である.

5.3 AE タイプの分類精度

第4章で述べたバーストレベルに基づく特徴量 x_nを 用いて、k-means 法によりクラスタリングし、その分 類性能を評価した (表 2). クラスタに属するデータの 正解ラベルの多数決で、クラスタ代表クラスを決定し た. 代表クラスの正答率を Micro Averaged Precision (*MiP*), および Micro Averaged F-measure (*MiF*)で, クラスタ内の正解ラベルのばらつき具合をエントロ ピー (Entr.) で,発見できた AE タイプ数 (Num.),す なわち代表クラスの種類数をそれぞれ評価した。初期 値依存性を排除するため、50回実行し平均値と標準偏 差を記した。また、基本的な時間領域特徴量 (Basic) として持続時間,最大振幅,分散,波高率,実効値, 尖度, 歪度, および周波数領域特徴量 (Spec.) として, 自己回帰モデルを最大エントロピー法により推定した 周波数スペクトル¶を特徴ベクトルとした場合につい ても記載した.

表 2 より, Burst 特徴量は Basic や Spec. と比べて, 特に MiF で良い性能を示している.これは,少数の クラスタで AE タイプを正しく分類できていることを 示している.また, Num. が 5.82(全 6 タイプ)と,ほ ぼ全ての AE タイプを発見できていると言える.

5.4 破壊ダイナミクス

損傷試験の時系列可視化結果を図7に示す.可視化 層ニューロンは15×10個の六角格子に設定し,近傍 関数はガウス関数を用いた.時系列順序付け関数のパ ラメータは,w = 0.5とした.図の濃淡はU-matrix表 現¹により描画している.これは,特徴空間内での近 傍ニューロンとの距離を反映し,濃淡が濃いほど近傍

[¶]統計解析ソフト R を使用

^{||}SOM_PAK に含まれているプログラムを使用

図 7: Sequence-based SOM による破壊ダイナミクス の可視化結果

図 8: 図7のマップに対応する成分分布

との距離が遠いことを表している.また,各ノード上 には多数決で決定された代表 AE タイプが表示されて いる.図8は図7のマップに対応するバーストレベル 毎の分布を表している.明暗が明るいほど,そのバー ストレベルを多く含んでいる事を表している.

図7および図8から,大きく以下の4期間に分けられる(図5の期間I~IVに対応).

- 期間 I: 領域 (a) に着目すると、バーストレベル 3を多く含む Type B(せん断モード) が多く現れ ている。これは、昇温期間であるため、熱膨張に より電解質とカソードおよびアノード、もしくは ガラスシールとの間に大きなせん断応力が生じ、 横ずれしたためと考えられる。また、この期間に バーストレベル4以上はほとんどないことから、 エネルギーの大きなき裂は生じていない。
- 期間 II: 領域 (b) に着目すると, 全てのバースト

レベルを含む非常に大きな Type E が多く現れて いる. Type E はエネルギーの大きなき裂の連鎖 を表している. この期間は 300C[®] 程度までの降温 期間であるため,通常この温度で内部まで破壊さ れるような応力が生じたとは考えにくい. そのた め,試料の不均一性から生じたき裂,もしくは加 工段階でできた小さな傷が連鎖して一気に進展し たものと考えられる.

- 期間 III: 初期欠陥の進展が収まると、他の期間に 比べてバーストレベル4をあまり含まない Type Dが領域(c)に現れている.これは、ガラスシー ルがまだ完全に凝固していないため、電解質の収 縮は始まっているものの、強いせん断応力が生じ ていないためと考えられる。
- ・期間 IV: ガラスシールが凝固し、電解質が収縮 するに伴って強いせん断応力が生じる.そのため、 バーストレベル4を多く含む Type D および Eが 現れている.一方、領域(d)に着目すると、他の期 間に比べて Type C のバーストレベルが低くなっ ている.これは、降温の最終段階であるため、破 壊エネルギーがほぼ解放されたためと考えられる.

6. おわりに

本稿では、まず SOFC の損傷計測信号である AE データに対して、Kleinberg のバースト抽出法に基づ いた AE 波抽出法、および時系列可視化手法について 述べた.実際の SOFC 損傷試験データを用いて、バー ストレベルに基づく特徴量が従来の特徴量よりも精度 良く AE タイプを分類できることを示した.そして、 SOFC の破壊ダイナミクスが視覚的に容易に捉えられ、 物理現象として解釈可能であることを述べた.

このようなマクロな時系列評価は、複数の実験条件 間の AE タイプ系列を比較することで、より正確な損 傷種類の推定や、電気化学的手法と組み合わせた電圧 低下と損傷パターンとの関係の獲得などにも繋がる. 本手法により導かれる仮説を元に検証実験を行うこと により、SOFC の開発が加速されると期待できる.

参考文献

- K. Sato, H. Omura, T. Hashida, K. Yashiro, T. Kawada, J. Mizusaki, and H. Yugami. Tracking the onset of damage mechanism in ceria-based solid oxide fuel cells under simulated operating conditions. *Journal of Testing and Evaluation*, 34(3):pp.246-250, 2006.
- [2] J. Kleinberg. Bursty and hierarchical structure in streams. In Proc. of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.1-25, 2002.
- [3] K. Fukui, K. Saito, M. Kimura, and M. Numao. Visualizing dynamics of the hot topics using sequencebased self-organizing maps. *Lecture Notes in Artificial Intelligence*, 3684:pp.745-751, 2005.
- [4] 仲佐 博裕, アコースティックエミッションの理論と実際, 地人書館, 1994.
- [5] T. Kohonen. Self-Organizing Maps. Springer-Verlag, Heidelberg, 1995.