J-049

連立非線形拡散時間発展方程式による動きボケの除去

Motion De-blur by the Simultaneous Non-linear Diffusion Time Evolution

原田	寬之	齊藤	隆弘	小松	隆
Hi royuki	Harada	Takahiro	Saito	Takashi	Komatsu

1.はじめに

鮮鋭度改善法は、様々な要因でボケ劣化した画像を鮮 鋭化する手法である。この手法としては、ピーキング法 が知られているが、この手法はランダムな雑音が加わっ ている場合、ランダム雑音も強調してしまう。本研究で は、非線形フィルタを入力画像に繰り返し適用すること でランダム雑音を除去し、エッジの強調を行う過程で、 異なるエネルギー汎関数、また離散化法を組み合わせ最 適な組み合わせを考える。

また、入力画像をある一方向への動きをもつ動きボケ 画像とし、動きボケ対策用に改良した非線形フィルタと、 従来の非線形フィルタとの鮮鋭化の違いについての実験 を記述する。

2.非線形拡散方程式

非線形拡散方程式は次式のように定義される。

$$\frac{\partial f}{\partial t} = div \left[c \left(\left\| \nabla f \right\| \right) \cdot \nabla f \right], \quad C \left(\nabla f \right) = \frac{1}{1 \left[\left\| \nabla f \right\| / k \right]^2} \quad (1)$$

この式では、エッジなどの隣接する画素の輝度差が大きいところでは、 $\|\nabla f\|$ の値が大きくなり $C(\|\nabla f\|)$ が0に近づくので拡散が抑えられる。また、平坦な所などの画素の輝度差が小さいところでは、 $\|\nabla f\|$ の値が小さくなり $C(\|\nabla f\|)$ が1に近づき事で拡散が抑えられる。

3.2次の非線形等法方程式

本研究では2つのエネルギーモデルについて考える。 (1)薄板たわみモデル

$$\tilde{\varepsilon}[f] = \iint_{D} \left[\left(f_{xx} + f_{yy} \right)^{2} + \frac{\sigma^{2}}{2} (f - g)^{2} \right] dxdy \quad (2)$$

(2) Total Variation モデル

$$\tilde{\varepsilon}[f] = \iint_{D} \left[\sqrt{f_{xx}^2 + f_{yy}^2} + \frac{\sigma^2}{2} (f - g)^2 \right] dxdy \quad (3)$$

これらのエネルギー汎関数の値を最小とするを求める。 ここで、式(2)の第一項、また式(3)の第一項は滑らかさ の定義を表している。また、式(2)、(3)の第二項では、拡 散の停止制御を行う。原稿では、(2)式に補助関数を用い て薄板たわみモデルを書き直す、ここで、補助関数を用 いたことで、(2)式との誤差を考慮した項を導入し、その エネルギー汎関数を最小とする連立偏微分オイラー方程 式を求める。その方程式は、線形拡散項、オーバーシュー ト項、反作用項をもつ式となるので、線形拡散項に非等 方性拡散項を導入し近傍4画素を用いる4点法で離散化 し、差分形式で表すと、

$$\begin{split} f_{i,j}^{\tau+1} &= f_{i,j}^{\tau} + \varepsilon \cdot \left[\sum_{d=N,S,E,W} \left\{ C\left(\left| \nabla_{d} f_{i,j}^{\tau} \right| \right) \cdot f_{i,j}^{\tau} \right\} \right. \\ &\left. - \frac{s}{2} \left\{ \left(u_{i+1,j}^{\tau+1} - u_{i-1,j}^{\tau+1} \right) \right\} + \left\{ \left(v_{i,j+1}^{\tau+1} - v_{i,j-1}^{\tau+1} \right) \right\} - \frac{\sigma^{2}}{2\lambda} \cdot \left(f_{i,j}^{\tau} - g_{i,j} \right) \right] \\ u_{i,j}^{\tau+1} &= u_{i,j}^{\tau} + \frac{\varepsilon}{\lambda} \cdot \sum_{d=N,S,E,W} \left\{ C\left(\left| \nabla_{d} u_{i,j}^{\tau} \right| \right) \cdot u_{i,j}^{\tau} \right\} \\ &\left. - \varepsilon \cdot \left\{ u_{i,j}^{\tau} - \frac{1}{2} \left(f_{i+1,j}^{\tau} - f_{i-1,j}^{\tau} \right) \right\} \right\} \end{split}$$
(4)
$$&\left. - \varepsilon \cdot \left\{ v_{i,j}^{\tau} - \frac{1}{2} \left(f_{i,j+1}^{\tau} - f_{i,j-1}^{\tau} \right) \right\} \end{split}$$

となる。これらの非線形処理を入力画像に繰り返し適用 することで画像を鮮鋭化する。

<u>4.4点法と8点法</u>

Г

本研究では離散化法として上記の4点法に加え、近傍 8画素を用いた8点法についても検討を加えた。8点法で は、近傍4点間の差分に加え、それぞれの垂直方向の差 分候補を2つ選び、その2つの差分の大きさを符号化関 数により判定し、垂直方向の差分の値が小さい値をもう ひとつの差分として適用する。4点法と8点法とを実験に て比較している。

5.動きボケへの適応方法

原画像に、ある一方向だけにガウスボケを加えた、動 きボケの入力画像の鮮鋭化について検討を加えた。動き ボケを鮮鋭化は式(4)の変更により実現する。式(4)の従 来の更新式の第一式、第二項のオーバーシューティング 項に回転行列を用いて書き直すと

$$\begin{split} f_{i,j}^{\tau+1} &= f_{i,j}^{\tau} + \varepsilon \Biggl[\sum_{d=N,S,E,E} \Biggl\{ C \Bigl(\left| \nabla_d f_{i,j}^{\tau} \right| \Bigr) \cdot f_{i,j}^{\tau} \Biggr\} \\ &- \frac{s}{2} \Biggl\{ \cos\theta \cos\theta \Bigl(u_{i+1,j}^{\tau+1} - u_{i-1,j}^{\tau+1} \Bigr) \\ &+ \sin\theta \cos\theta \Biggl\{ \Bigl(u_{i,j+1}^{\tau+1} - u_{i,j-1}^{\tau+1} \Bigr) + \Bigl(v_{i+1,j}^{\tau+1} - v_{i-1,j}^{\tau+1} \Bigr) \Biggr\} \ (5) \\ &+ \sin\theta \sin\theta \Bigl(v_{i,j+1}^{\tau+1} - v_{i,j-1}^{\tau+1} \Bigr) \Biggr\} - \frac{\sigma^2}{2\lambda} \Bigl(f_{i,j}^{\tau} - g_{i,j} \Bigr) \Biggr] \end{split}$$

となる。式(5)の に動きボケの方向を指定することによ り意図する方向のみにピーキングをかけることが可能と なり、従来の鮮鋭化法より有効な結果が求められる。

また、式(5)と同様に、Total Variation の場合の連 立非線形拡散時間発展方程式の第1式、第2項のオーバー シューティング項にも同様の変換を行う。

6.実験方法と結果

6.1 薄板たわみモデル、Total Variation と4 点法、8 点法の比較

原画像にガウスボケとガウス性ノイズを付加して人工 的なテスト画像を生成し、この画像を入力画像として処 理を行う。本実験では、薄板たわみモデルとTotal Variation モデル、4点法と8点法の組み合わせの計4種 類の非線形処理について、 s (シューティングパラメー タ)の値、更新速度のの値を変え、これらのパラメータ の最適設定について検討した。図3の画像は薄板たわみ モデルの4点法で鮮鋭化した画像を示した。また図4に 原画像に対する、SN比(SN)、ボケ除去度(Br)、雑音除去 度(Nr)、アーティファクト比(Ar)を示した。

sの値が大きすぎると、雑音が除去されず、鮮鋭化だ けがなされる。逆にsの値が小さすぎると雑音はある程 度除去されるが、鮮鋭化はなされない。パラメータsは、 薄板たわみモデルの場合は0.01~1.0、Total Variation モデルでは、0.25~0.45の範囲で良い鮮鋭化結果が得ら れた。

6.2 動きボケ入力画像に対しての比較

一定方向のガウスボケを水平方向を0度方向として反 時計回りに、45度方向、90度方向、135度方向と4方向 の画像を用意し、ガウス性ノイズを付加して、人工的な テスト画像を入力画像として更新をする。本実験では薄 板たわみモデルの4点法、8点法。また、Total Variation モデルの4点法、8点法。さらに、動きボケ対策をしてい ない薄板たわみモデルの4点法の計5種類を用いて動き ボケの角度を入力し、入力画像を更新させ、鮮鋭化の実 験を行った。6.2の実験においてもs、の値を変え最適 の設定法を検討した。図5の画像は、0度方向に動きボケ を付加したテスト画像を示した。また、図6に動きボケ 用に書き直した薄板たわみモデルの4点法で鮮鋭化した 画像を示した。図7は、0度方向の動きボケ画像における、図5 0度方向の動きボケ画像 改良した薄板たわみモデルの4点法の原画像に対しての SN、Br、Nr、Ar を示した。また、図8は、0度方向にお ける、5種類の方式の更新回数に対するSN値を示した。

パラメータの設定は、各動きボケ入力画像、共に実験 6.1と近い値で、良好な鮮鋭化結果が得られた。薄板たわ みモデルの4点法で行った鮮鋭化法が、他のフィルタに 比べ、Nr が高い値をとることが分かった。また動きボケ 用に書き直した更新式の方が、従来の更新式より、鮮鋭 化能力が高い事が分かった。

7.むすび

薄板たわみモデルと Total Variation では、SN 比な どの評価結果にはあまり大きな差が出なかった。また、4 点法と8点法では、4点法の方がより良い鮮鋭化ができる ことが分かった。動きボケの鮮鋭化の実験では、薄板た わみモデル、Total Variatin 4 点法、8 点法の組合せ SN 比の結果としては、大きな差が出なかった。

今後、今回の動きボケ鮮鋭法を利用して、カメラの移 動や物体の移動によって動きボケが生じた動画像に対し て、ブロックマッチングを利用し動きボケの方向を自動 判定し、その方向にのみ鮮鋭化処理を行う応用が考えら れる。

原画像 図 1

図 4 SN, Br, Nr, Ar 更新特性

26.5 3 25 0 📰 -0.5 artif 23.5 23 100 1 Nunber of iteration 図7 SN Br Nr Ar 更新特性

(入力画像0度方向の動きボケ)

図6 動きボケ鮮鋭化画像

