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Fig.1. Volume traversal: The volume is RLE compressed in y-
direction. The traversal order is performed from front to back in z-
direction, as indicated by the black arrows. 

Abstract 
We present a method for visualizing large voxel volumes 

based on optimized ray-casting. Other than conventional 
methods casting a ray for each pixel on the screen, our method 
only casts one ray per column and then traverses the voxel 
volume in a front to back manner. This can be done efficiently as 
our data is encoded by run-length-encoding (RLE), reducing the 
overall cost for the traversal. To exploit frame-to-frame 
coherency and to make the visualized scene rotation invariant, 
we are storing the rendered result temporarily in a cube-map. As 
the cube-map might have any orientation when finally rendered 
as cube around the view-point, 6 DOF are achieved. 

１． Introduction 
Volume rendering is an area with many applications and it has 

been studied well in the past history. The algorithms that have 
been utilized to achieve the visualization of volume data are 
various, and range from simple ray-casting over slice based 
rendering to more complex acceleration structures like octrees, 
Kd-trees or other space-skipping techniques to improve the 
visualization speed. A comprehensive review of all significant 
techniques can be found in [1]. The intention of our research is, 
to optimize ray-casting based rendering especially for voxel 
volumes. This is a special case of volume rendering, as empty-
space skipping can be treated more efficiently. The main purpose 
of our algorithm is, to utilize newest graphics hardware for 
performing ray-casting directly on the GPU using CUDA [4], 
rather than using inflexible Shaders, which have been used so far 
for general-purpose computations.  

2． Algorithm design 
Our intended algorithm is based on the partially documented 

method of Ken Silverman [3]. The algorithm basically does ray-
casting of run-length-encoded (RLE) volume data in a front-to-
back manner. The main advantage over conventional volume 
rendering approaches is that the RLE-encoding drastically 
accelerates the ray-traversal for average complex scenes. For 
performing an accurate volume traversal, a gradient based 
traversal algorithm similar to [2] is used. To further improve the 
speed, mip-maps of the volume data are generated which speed-
up the rendering of distant objects. Our desire is to improve and 
modify the existing algorithm in several ways, to make it feasible 
for up-to-date graphics hardware. We therefore have to take care 
of data alignments, caching, parallel computing issues and do 
further plan to take advantage of frame-to-frame coherencies. 

3．The basic volume traversal 
The algorithm processes the screen successively column by 

column from left to right in x-direction and in a near-to-far 
manner in z per column. For each column, one ray needs to be 
casted in xz-direction, while for each xz-position, all vertical 
voxel-sticks (the RLE-encoded elements) have to be visited. To 
allow an early ray termination, pixels on the screen that have 
been drawn are marked. If one column is marked completely, the 
traversal can be stopped as no more pixels will be drawn. 

The advantage of the proposed method compared to 
conventional volume rendering is, that we do not have a 
complexity of O(n3).The complexity is O(n*n*c), where n is the 
side length of the volume cube, and c the maximum complexity 
in y-direction. In worst case situations, c might be equal to n, but 
for average 3D-scenes (especially landscapes), c is a number that 
is much smaller than n. 

4．6 degrees of freedom 
The method explained above works well if the camera is 

oriented orthogonal to the xz-layer as shown in Fig.2, resulting in 
4 degrees of freedom (DOF). However, our idea of visualization 
is, to allow a free camera orientation with 6 degrees of freedom. 
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Fig.2. 6 DOF by using a cube-map: The scene is rendered in six 
directions in a first step, where each direction is equal to one 
texture on the cube-map. In the second step, the cube-map is 
rendered around the camera. 

 
Fig.3. Normal vectors: As our RLE encoded volume only stores 
one normal per element, we are required to split the object for 
achieving accurate surface normals. 

 
Fig.3. Normal vectors: As our RLE encoded volume only stores 
one normal per element, we are required to split the object for 
achieving accurate surface normals. 

Fig.4. Memory management: The scene is stored in textures, 
where each texture can store one y-layer. The textures are 
indicated as grey blocks below the scene 

The method described in [3] therefore utilizes a two-step 
approach. In the first step, the scene is rendered in columns that 
are aligned to the RLE-encoded volume data to a temporary 
buffer. In a second step, the temporary buffer is used as a texture 
and mapped onto the screen. 

We propose a different way of handling 6 DOF by storing the 
rendered results achieved in section 2 temporarily in a cube-map. 
For the final visualization, we have to place the cube-map as a 
standard cube around the camera as demonstrated in Fig.2. This 
allows a rotation invariant caching of the rendered scene. 

To speed up the process and avoid rendering all cube-map 
textures each time completely, it is possible to mark visible areas 
in a pre-processing step. 

5．Shading and Materials 
In order to shade the rendered geometry, we need to have 

normal vectors stored for each of the rendered volume elements. 
This has to be handled a little bit special manner in our case, as 
the volume is run-length encoded. In particular, elements like a 
simple cube for example (see Fig.3) have to be split into multiple 
parts for accurate normal vectors. 

To provide even more surface details, we can apply texture 
mapping by storing an additional material index in the RLE data 
structure.  The texture coordinates can then be computed based 
on the voxel-position in 3D-space and the normal-vector 
orientation, while the final color is computed using tri-planar 
mapping, as described in [5].  

One RLE element finally consists of 8 bytes, which are 
divided into the following parts:  

Start coordinate (2 bytes), run-length (2 bytes), surface normal 
(3 bytes) and material index (1 byte).  

6．GPU Optimizations 
As we are dealing with graphics hardware, the scene is stored 

in textures, as in Fig.4, rather than conventional arrays. The 
scene is therefore subdivided into quadratic regions where the 
amount of texture layers for each region depends on the y-
complexity. As recent graphic cards have up to 128 and more 
cores, it is possible to parallelize the rendering task by assigning 
one column of the screen to each core. Frame-to-frame 

coherency can further be employed, by caching the visible RLE 
elements of the view-frustum in a texture, avoiding a complete 
traversal for each xz-position. 

6．Conclusions and Future Work 
We have presented a volume rendering method for large voxel 

volumes and proposed several ways to improve existing methods 
for nowadays graphics hardware. Future work will include the 
implementation of the algorithm using the CUDA programming 
language and testing the method on various examples.  
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