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ABSTRACT

EPI (Epipolar Plane Image) is the basic element in
representation of 3D image and FTV (Free-view point
TV). In order to generate the FTV, a huge amount
of data has to be acquired, which has been posing a
great challenge for the application of FTV. Numerous
methods have been conducted to handle the captur-
ing issue until the concept of compressed sensing was
proposed, which has triggered a great revolution in
signal acquisition field. Fortunately, the compressed
sensing can also be used for capture of Ray space to
generate FTV. In addition, for reducing the number
of measurements in compressed sensing, it is neces-
sary to analyze the sparsity of signal first, and the
special properties of EPI give us a platform to do the
special process and analysis to this category of image.
In this paper, we focus on the sparse decomposition of
EPI, and try to represent EPI by the combination of
few atoms in the overcomplete dictionary by greedy
pursuit algorithm. The experimental result gives the
comparison of the sparse decompositions by using dif-
ferent dictionaries.
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1 Introduction

EPI (Epipolar Plane Image) is a significant com-
ponent in the construction of Ray space [1], which
was proposed as early as in 1996 in order to study
for the visual 3D communication. The basic idea of
Ray space is that the captured views from different
positions could be gathered together to form a cubic
space which could be viewed as a sealed space with
infinite lights going through. EPI can be viewed as
the combination of light routes in one intersection of
the cubic. Besides, FTV (Free viewpoint TV) [2] can
be obtained by vertically cutting the group of EPIs in
the Ray space as shown in Figure 1. Traditionally,
for FTV system generation, camera array is required
to capture different views from various angles, thus,
a huge amount of data will be generated, which poses
a great challenge for data compression and transmis-
sion. Recently, the research on the theory and appli-
cation of compressed sensing [3, 4]has brought great

interests in alternatives to traditional capturing con-
ception. Fortunately, compressed sensing theory can
be also used in the capture process of FTV system,
so that the burden of data could be alleviated greatly
in the acquisition process. To be specific, the number
of measurements in compressed sensing procedure de-
pends greatly on the sparsity of original signal. Thus,
the research and analyze about the sparsity of EPI can
provide great assistance in the capture of Ray space
and generation of FTV.
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(a) Ray Space

Fig 1: The generation of FTV by cutting Ray space

Truly, EPI indeed has several unique features
which are not equipped in normal pictures, and one
of the best ways to evaluate the sparsity of EPI is the
image decomposition[5]. Traditionally, the complete
dictionary, also called basis, could provide a good
result for signal analysis and decomposition. How-
ever, sparser approximation of signal can be obtained
by using overcomplete dictionary. In literature, the
sparse solution can be roughly classified as Convex
Relaxation methods[6], Bayesian Framework[7], and
Greedy Pursuit methods.[8, 9]

In this paper, based on the previous research and
for simplicity, greedy pursuit methods are employed
to decompose EPI sparsely in an overcomplete dic-
tionary. The whole structure of this paper is as fol-
lows. In the first section, we give a brief introduction
of EPI with its application in FTV generation, and
also present the overview of signal sparse decomposi-
tion. In the second part, the greedy pursuit methods,
including matching pursuit and orthogonal matching
pursuit, are mentioned respectively. Meanwhile, the
dictionary selection and parameters adjustment are
also proposed in this part. Then, the experiment set-
ting and results are presented and discussed in the
third section. Finally, several short conclusions and
future works are mentioned in last part.
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2 Sparsity Decomposition Method
2.1 Greedy Pursuit Algorithm

Greedy pursuit method, including MP (Match-
ing Pursuit) and OMP (Orthogonal Matching Pur-
suit), can provide a great flexible method in image
representation and it can offer a simple way to itera-
tively decompose the signal along the most significant
features. Thus, the signal can be represented as the
combination of a group of elements with the corre-
sponding coeflicients in the selected dictionary. Be-
sides, the energy of signal can also be concentrated on
the smallest number of elements through the method
of largest inner product in each iteration.

Generally, the signal is named as f, decompo-
sition space is named as space H , and the element
in the overcomplete dictionary is called atom, named
as x;. Besides, the z; is a unitary vector with the
norm of 1. Thus, the first decomposition of f can
be represented as f = (f,xo)xo + R°f, where, z¢ is
the optimal vector which can obtain the largest in-
ner product with signal f , and R°f is the residual
of signal f. Clearly, if the iteration continues, it can
obtain R"f = (f, x,)x, + R"T! f. Thus, another rep-
resentation can be obtained after IV iterations that

N-1
f= Y (f,x;)x; + RN f. Besides, considering the en-
i=0
h o N N2 RN FII2 ¢ g
ergy, we havel| f[|* = > [(f,z;)|*+ R f||* to guar

=0

antee the energy conservation.

MP is one of the simplest methods of realizing
signal decomposing. By using this method, the fi-
nal residual signal will converge to certain predefined
threshold €. However, if the convergent speed is quite
slow, it will lose the advantage of sparse representa-
tion. Fortunately, OMP (Orthogonal Matching Pur-
suit) is an optimal approximation with respect to the
selected subset of dictionary, because it ensures that
the residual of signal is orthogonal to all the previous
selected atoms in each iteration. The main difference
between MP and OMP is that there is an update of co-
efficients in order to always keep the least error, rather
than choosing the largest inner product as the coeffi-
cient. The specific procedure of orthogonal matching
pursuit is illustrated in Algorithm-1

2.2 Overcomplete Dictionary Selection

Actually, it makes sense that signal is decom-
posed along the significant feature by using greedy
pursuit algorithm. Thus, the selection of overcom-
plete dictionary is of great importance because sparse
decomposition will achieve a quite high efficiency if
the chosen dictionary can represent basic features of
signal. Dozens of interesting dictionaries have been
proposed over the last decades [10, 11], and roughly,
theses proposed dictionaries could be classified into

Algorithm-1 OMP

Input: fr.c =0, Rof =f,D= {®}7n =0,
Itenum = K, X= {all the candidate atoms}
Repeat:

1: Compute inner product between candidate
atoms and residual signal { (R"f,z;);z; € X};

2: Find the largest inner product with the corre-
sponding atom x,,,
I{R™f,xn)|| > asup;(R"f,z;),0 < a < 1;

3:Record the atom and inner product in the set of
D and C respectively;
Dn+1 = Dn U Tn, Cn-i—l = Cn U<Rnfa xn>a

4: Find the optimal solution C’n+1for argmin{e =
|f — DCpiills,}, update the coefficient set
Cry1 — Crin and residual signal Rl = f —
DCn+17 frec = DCn+1;

Until: n > K

Output: C’,D

frequency dictionaries, time-scale dictionaries, and
time-frequency dictionaries with Fourier dictionary,
wavelet dictionaries, and Gabor dictionaries as typ-
ical examples for each type of dictionary respectively.
Later, several kinds of packages were proposed, which
could merge various dictionaries together to obtain
better performance.

Image decompositions among the Gabor dictio-
nary could characterize the local scale, shift, and ori-
entation of the image variations. Besides, for EPI,
it has the explicit features of local fluctuation and
orientation. Thus, in this paper, we adopt Gabor dic-
tionary with the parameters of scale, translation and
rotation in time domain and modulation and phase
in frequency domain. The Gabor function can be
written as g(z,y) = e_(I2+y2)cos(27rfx + ¢). Here,
we would like to do some modification of this mother
function. Firstly, due to the specific feature of EPI,
it only fluctuates in one direction while it is quite
smooth in the another direction. Thus, the contribu-
tion of y is supposed to be deleted. Besides, for the
edge detection, the second derivative operator is al-
ways employed to obtain good performance[12]. Thus,
we adopt the second derivative of Gabor function to
be the final mother function to generate redundant
atoms, shown as g(z,y) = (42% — 2)6*I2005(27rfx +
©). Moreover, the operator of I' is given by I'g =
g(s7trg(x — u)) and also the parameters f and ¢
are tunable. The parameter set can be represented
as P = {s,u,0, f, ¢}, and numerous of atoms can
be generated by tuning these parameters. Basically,
the pattern of mother function is illustrated in Fig-
ure 2 with the size of N = 16 and parameters of
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s=4,u=N/2,0 =—7/4,f =0.2,¢0 = 0.

Fig 2: An atom pattern of 2D Gabor dictionary

3 Experimental Results

In this section, firstly, we set the experiment en-
vironment, giving out the whole parameter scope of
dictionary. Afterwards, we compare the results of 1D
decomposition and 2D decomposition. In addition, we
also compare the 2D decomposition results of 2D Ga-
bor dictionary and 2D DCT with the same block size.
The specific scope of each parameter in 2D Gabor dic-
tionary is shown in Table-1,and the complexity of 2D
dictionary is K NlogaN.

Table-1 Parameter Set of 2D dictionary
s=27,0<j5 <logaN
u=[0,N —1]
9 = 6 Y Y 3T 2 T

122 127 120 120 12’ 127

f=0,0.1,0.2,..,1.0
p=0,m

Next, the mother function of 1D decomposition
is given out, g,(x) = Ke=® where s = 27,0 < j <
logaN, and 0 < u < N — 1, and the complexity of
1D dictionary is NlogoN. The test EPIs are shown is
Figure 3, with the resolutions of 640x80 and 640x40
respectively. The sparsity of EPI is defined as § =
%, where T and C are total number of coefficient
and the number of non-zero coefficient, respectively.
Thus, the iteration number is set to be 5, 10, 20, and
40 with the block size of 20x20 .

— e ——_

(a) fuzzy EPI

(b) kuma EPI

Fig 3: The Test EPI

Firstly, we take one block from EPI as an exam-
ple to illustrate the sparse decomposition. The size
of the block is set to be 16 with the parameter set
in Table-1, and we choose 5 iterations for simplic-
ity to show the approximation. The whole procedure
is show in Figure 4. The original block is approx-

imated by the combination of these five atoms with
the corresponding coefficients.

(b) Atom combination

(a) Original block

Fig 4: The illustration of 2D decomposition of one
block

The comparisons between 1D and 2D dictionary
are shown in Figure 5. It is clear that the recovery
performance by 2D dictionary is almost better than
the one by 1D dictionary in the same sparsity. Espe-
cially, as the sparsity is quite high, 2D dictionary has
outstanding performance.The reasons are basically as
follows. For one thing, 2D atoms can present the local
feature of signal better, and for another thing, the size
of 2D dictionary is larger than 1D dictionary. How-
ever, as the decrease of sparsity, the 1D dictionary
could achieve better performance, and the probable
reason is that 1D dictionary does not consider about
the local structure and it can get finer approximation
as the increase of atoms.

Distortion Curve of fuzzy EPI Distortion Curve of kuma EPI

v
s —~ 35

(a) fuzzy EPI (b) kuma EPI

Fig 5: The comparison between 1D and 2D dictionary

The comparisons between 2D Gabor dictionary
and 2D DCT with different block sizes are shown in
Figure 6. There are several points which are wor-
thy of mentioning. Firstly, as the increase of block
size, the performance of 2D DCT is increasing and the
main reason is that 2D DCT is a general basis for 2D
signal decomposition. Thus, the generality becomes
more obvious as the block size increases. Conversely,
the performance of 2D Gabor dictionary drops as the
expansion of block size and the main reason is that
the generated atoms can explicitly represent the fea-
tures of EPI in a relatively small area. If the size is
too large, the local feature will not be obvious, and
the performance will decrease. Besides, as the spar-
sity increases, the 2D Gabor dictionary outperforms
2D DCT mainly due to the large scope of dictionary
and the manipulation of parameters.
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Distortion Curve of fuzzy EPI Distortion Curve of kuma EPI

s B
—8 20 Dictionary —=-2D Dictionary
2001 .\'\a—wm
Y 0
~=
& \\\

PSNR value

PSNR value

0s4 036 01
sparsity sparsity

(a) fuzzy EPI(20x20) (b) kuma EPI(20x20)

Distortion Curve of fuzzy EPI Distortion Curve of kuma EPI

-

PSNR val
PSNR val

05 02 osa
sparsity Sparsity

(c) fuzzy EPI(40x40) (d) kuma EPI(40x40)

Fig 6: The comparison between 2D Gabor dictionary
and 2D DCT

4 Conclusion

In this paper, the modified Gabor function is
adopted to generate the overcomplete dictionary,
which is later employed for the sparse decomposition
of EPI. Meanwhile, by using greedy pursuit algorithm,
the signal could be sparsely decomposed into quite
few atoms which represented the main features of the
signal. The experimental results show that 2D dic-
tionary performs better than 1D dictionary and also
better than the complete basis function, 2D DCT, at
high sparsity condition. Meanwhile, we also explain
the performance alternate as the change of block size.
Next, we will reduce the size of dictionary while pre-
serve the good performance. Besides, the feasibility of
EPI sparsity decomposition paves a great way for the
implementation of compressed sensing to EPI sparse
acquisition for the Ray space reconstruction, which
will be also our future work.
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