GPUを用いたぼけ・ぶれ画像のブラインド復元 Blind Image Restoration for Blurred Images implemented on GPU

大竹 翔太	永田 敦史	後藤 富朗	平野 智	櫻井 優
Shota Otake	Atsushi Nagata	Tomio Goto	Satoshi Hirano	Masaru Sakurai

Abstract— 一般に、ぼけやぶれを含んだ画像は理想的 とは言えない。そこで、ぼけやぶれを含んだ画像から光 の拡散係数(ぼけ・ぶれ)を推定し、逆畳みこみを行うこ とでぼけ・ぶれを除去した画像を得るプラインドデコン ボリューションと呼ばれる手法が存在する。しかし、ぼ け・ぶれの推定には大きな計算コストが必要となり、リ アルタイム処理が実用上の課題である。そこで、本研究 ではぼけぶれ推定の処理に GPU を用いることで処理の高 速化を図った。GPUを用いて処理を行った場合と CPUのみ で処理を行った場合の実行時間を測定し、ぼけ・ぶれ補 正に GPU を用いることの有用性を示す。

Keywords—ぼけ・ぶれ補正; GPU 実装;; ブラインドデ コンボリューション

I. はじめに

スマートフォンやデジタルカメラの普及に伴い、写真 を撮影することは一般的となっている。しかし、多くの 写真には手振れやピントのずれによって望ましくない画 質劣化が生じている。この問題を解決するために、光学 的な手振れ補正機能がいくつかのデジタルカメラに組み 込まれているが、実際には不十分であり画像処理による 補正が必要である。

ローカルパッチに対して光の拡散係数(PSF)の推定と理 想画像の推定を交互に繰り返して画像復元を行う手法が 提案された [1]。しかし、この手法は処理コストが大きく 処理に時間がかかってしまう。本論文では、ブラインド 画像復元アルゴリズムを GPUに実装し、処理時間の削減 を行った。GPUに実装した場合の処理時間と CPUに実装 した場合の処理時間を比較し、GPU に実装することの優 位性を示す。

II. ぼけ・ぶれモデル

ぼけ・ぶれ画像復元は未知の一様なぼけ・ぶれ関数で ある PSF を求めることで行われる。PSF は式(1)で表され る。

$$g = f * h + n \tag{1}$$

ここで、* は畳み込み演算子であり、g はぼけ・ぶれ画像、f は理想画像、h は PSF、n は未知のノイズである。一般に、ノイズn はガウシアンノイズとして考えられる。本論文では、このモデルに従って画像復元を考える。

一枚のぼけ・ぶれ画像からの画像復元はブラインドデ コンボリューションと呼ばれる。ノンブラインドデコン ボリューテョンが既知の PSF を用いるのに対し、ブライ ンドデコンボリューションでは PSF が未知である。一般 に、ブラインドデコンボリューションは不良設定問題で あり、最適な PSF を一意に求めることは困難である。

Ⅲ. ブラインドデコンボリューション

本論文では、理想画像の推定と PSF の推定に評価関数 の最小化の繰り返しを用いている。特に、理想画像推定 ではTV (Total Variation) 正則化によってテクスチャを除去 しショックフィルタを掛けることによってエッジを強調 している。これは評価関数の収束性能を向上させる 役割 を持つ。さらに、デコンボリューションでは処理時間を 削減し復元性能を向上させるために D. Krishnan らが提案 した手法 [2] を用いている。また、PSF 推定フェーズでは 画像の一部であるパッチに対して処理を行うことにより 高速化を図っている。

Fig. 1 に、ブラインドデコンボリューションのブロック 図を示す。パッチ抽出、理想画像推定、PSF 推定、最終デ コンボリューションで構成される。まず、PSF 推定フェー ズのために画像の一部(ぼけ・ぶれを多く含むエッジ成 分)をパッチとして抽出し、輝度成分に対して処理を行 う。PSF 推定フェーズでは効果的な推定のために繰り返し 毎に PSF サイズを段階的に大きくする。初期状態は3×3 ピクセルに設定され、ステップ毎に √2 倍となり、最終的 に元の PSF サイズとする。最後に推定された PSF とぼけ・ ぶれ画像を用いて最終デコンボリューションが行われ、 復元画像を得る。

A. パッチ選択

計算時間を削減するため、PSF 推定フェーズの処理を考 慮して最適なパッチを選択する。ラプラシアンフィルタ とソーベルフィルタ(垂直、水平、両方)からエッジマップ を作成し、最適なパッチを選択する。

B. 理想画像推定(x-step)

理想画像推定はデコンボリューション、TV 正則化、シ ョックフィルタによって構成される。一時的なデコンボ リューション画像は式(2)によって得られ、D. Krishnan ら の手法 [2] を用いて、式(2)を最小化する。ルックアップテ ーブルを用いることによって処理時間は大幅に削減でき る。また、R. Liu らの境界処理 [3] を用いることでリンギ ングを削減している。

$$\min_{x} \sum_{i=1}^{N} \left(\frac{\lambda}{2} (x \otimes h - g)_{i}^{2} + \sum_{j=1}^{J} |(x \otimes f_{i})_{i}|^{\alpha} \right)$$
(2)

デコンボリューションを行った後、式(3)に示される Rudin-Osher-Fatemi (ROF) モデルの TV 正則化 [4] を行い、 骨格成分を抽出する。式(3)は Chambolle の射影法を用いて 最小化される。

Fig. 1. Processing Flow of Blind Deconvolution

$$f_0 = \operatorname{argmin}_f \{ \|f - g\|_2^2 + \lambda_r \operatorname{TV}(f) \}$$
(3)

TV 正則化を行った後、式(4)に示すショックフィルタ[5] によってエッジを強調する。

$$f_{t+1} = f_t - \operatorname{sign}(\Delta f_t) \|\nabla f_t\|$$
(4)

C. PSF 推定(k-step)

PSF は勾配分布∇fから式(5)によって推定される。ノイ ズを減らすために、閾値処理された勾配分布が用いられ る。式(5)は共役勾配法によって最小化される。

$$h = \operatorname{argmin}_{h} \{ \| \nabla f * h - g \|_{2}^{2} + \lambda_{h} \| h \|_{1} \}$$
(5)

D. 最終デコンボリューション

最終デコンボリューションでは、PSF 推定フェーズで最 終的に推定された PSF を用いて画像復元を行う。理想画 像推定処理と同じく D. Krishnan らの手法を用いて式(2)を 最小化する。最終デコンボリューションは RGB 成分それ ぞれに対して施される。

IV. GPU 実装

処理の高速化について検討するため、最終デコンボリ ューションを GPU に実装した。開発環境として、CUDA を用いた。CUDA はNVIDIA 社が開発した並列計算プラッ トフォームであり、GPU を汎用計算に用いることを容易 にする。CUDA は 拡張された C 言語から Visual Studio 等 の既存のコンパイラを用いて実行ファイルを生成する。 ソースコードは識別子によって CPU 計算と GPU 計算部に 分割されそれぞれコンパイルされる。一般に、大規模な 並列計算は多くのプロセッサーを用いて行われるが、1 つ の GPU は多くのプロセッサーを内蔵しているため、CPU で実装するより高速化が可能となる。

V. 実験結果

計算時間を比較するため、CPU と GPU の両方にデコン ボリューション処理を実装し、実行時間を計測した。実 験環境を TABLE I,II,III に示す。GPU には NVIDIA のハイ エンド GPU である GeForce GTX Titan を用いた。Fig. 2 に ブラインドデコンボリューションの結果を示す。また、 TABLEIV に処理時間を示す。GPU での最終デコンボリュ ーションの処理時間は、メインメモリと GPU のメモリ間 の画像転送時間も含んでいる。TABLE IV より、Full HD 画像に対しては、GPU 実装が CPU 実装より 10 倍高速化で きることを確認した。

VI. おわりに

本稿では、デコンボリューション処理を GPU に実装す ることによって処理の高速化に成功した。しかし、動画 像アプリケーションに対しては十分ではない。本稿では 最終デコンボリューションのみ GPU 実装したが、他の処 理も GPU に実装することによって更なる高速化を行うこ とが期待できる。今後の課題として、PSF 推定等のブライ ンドデコンボリューションの GPU 実装および性能改善が 挙げられる。

TABLE I. EQUIPMENT ENVIRONMENT

Software	Windows 7 64bit + CUDA 6.5 + Visual Studio 2013		
GPU	NVIDIA GeForce GTX Titan		
CPU	Intel Xeon E5-2360(2.6GHz)		
Memory	DDR3-1600 32GB		

TABLE II. GPU SPECIFICATIONS

Name	Ge Force GTX Titan		
Core	GK110		
Core Clock	876 MHz		
Multi Processors	14		
CUDA Core	2688		
Memory	6144 MB		
Memory Clock	3004 MHz		
Memory Interface Width	384 bit		
Memory Bandwidth	288.4 GB/Sec		

TABLE III. EXPERIMENTAL PARAMETERS

	256×256		
	31×31		
Kernele	5		
Latantinan	Deconvolution	Iteration	6
		λ_d	1500
		Iteration	10
	TV	Restraint λ_r	0.03
Latentinage		Gradient step size	0.125
estimation		τ	0.125
	Shock Filter	Iteration	1
		Strength dt	1.0
		Attenuation rate	0.9
PSF	Iteration		30
estimation	Threshold		0.075
Final	Iteration		6
Deconvolution λ_f			1500

(a) Blurred image

A part of Restored Image Fig. 2.

TABLE IV. PROCESSING TIME

	Processing Time [ms]			
Process	482×482		1920×1080	
	CPU	GPU	CPU	GPU
Kernel estimation (CPU)	2760		3182	
Final deconvolution	913	382	6657	627
(CPU or GPU)				
Total	3673	3142	9839	3809

参考文献

- [1] H. Senshiki, et al., "Blind Restoration of Blurred Images Using Local Patches," Proc. GCCE, pp. 320-321, Oct. 2015.
- [2] D. Krishnan and R. Fergus, "Fast Image Deconvolution using Hyper-laplacian Prior," Proc. ANIPS, pp. 1033-1041, Dec. 2009.
- [3] R. Liu and J. Jia, "Reducing Boundary Artifacts in Image Deconvolution," Proc. ICIP, pp. 505-508, Oct. 2008.
- [4] Osher and E. Fatemi, "Nonlinear Total Variation based Noise Removal Algorithms," Physica D, Vol. 60, pp. 259-268, 1992.
- [5] S.J. Osher and L.I. Rudin, "Feature-oriented Image Enhancement using Shock Filters," SIAM Journal on Numerical Analysis, Vol. 27, pp. 910-940, 1990.