H-040

隠蔽を抑制する単眼視ステレオ計測法の提案 Proposal of A Smart Single Camera Stereo Method for Reducing Occlusion

渡辺 隆† 草野 洸‡ 藤原 孝幸† 輿水 大和† Takashi Watanabe Akira Kusano Takayuki Fujiwara Hiroyasu Koshimizu

1. まえがき

ステレオ計測は、画像内の濃淡の変化が緩やかな面から、 抽出した計測点を各画像において対応させることが困難で あることから、明確なエッジ情報を持つ輪郭、テクスチャ を持つ面より抽出した特徴点計測に限定される。また、並 列に設置した 2 台のカメラにて撮像した画像には、形状情 報が取得できない隠蔽面が発生し、認識可能な物体面の計 測に限定されてしまう。これらの問題を解決するためには、 3 眼視ステレオ計測法が有効であることが知られており[1]、 次元形状復元、モーションキャプチャ等の研究に広く利 用されている[2]。しかし、物体の輪郭に沿った、明確な特 徴点情報の三次元距離計測に限定すれば、必ずしも面情報 を全て認識する必要はない。よって、3 眼視ステレオ計測 の代替となる、隠蔽面を抑制するステレオ計測システムの 開発は、低コスト化、省スペース化、さらには処理の単純 化において優位性を持つことになる。本論文では、1 台の 固定カメラと計測対象物を水平に移動させる簡素な構成の 単眼視ステレオ計測法を基に隠蔽面抑制の手法を実現し、 その有効性を実験にて検証したので報告する。

2. 提案手法

2.1 単眼視ステレオ計測法

単眼視ステレオ計測法は、カメラもしくは計測対象物を 移動させ、移動前後の 2 枚の画像から抽出する各々の特徴 点間距離を視差として、カメラから特徴点間距離を算出す るものであり、1台のカメラシステムと移動機構にて構成 されるシンプルなシステムであるといえる。しかし、前章 に述べたステレオ計測の問題に合わせて、移動させるカメ ラもしくは計測対象物の移動方向に規制が無い場合には、 複雑な処理を必要とすることが知られており[3]、2台以上 のカメラを使用した多眼視と比較した場合、カメラ間の位 置キャリブレーションが不要になること、さらには、コス トパフォーマンスの優位性を持つにもかかわらず研究の対 象は多くない。しかし、ベルトコンベアにて搬送される物 体、自動組立て装置内の製造物等のカメラから計測対象間 の距離が固定でき、カメラもしくは計測対象の安定した移 動が確保できる環境下での計測に限定すれば、十分に利用 価値のある手法であると考え[4]、図 1 に示す計測システム の開発を行った。

$$H = \frac{KD}{d} \tag{1}$$

†中京大学情報理工学部, SIST, Chukyo University ‡中京大学人工知能高等研究所, IASAI, Chukyo University

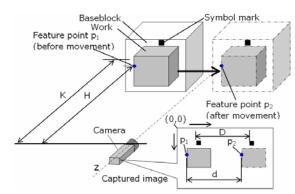


図1 単眼視ステレオモデル

2.2 隠蔽面抑制の手法

図1のモデルを基に、図2に示すような計測対象物をカ メラ視野の対角線方向(γ=±45°)に移動させる方法を提案す る。この移動方法により、図 2 の A~E 面を認識すること が可能となるため、従来のx軸(y=0° or 180°)方向の移動で は、D,E 面、y 軸($y=\pm90^\circ$)方向の移動時には B,C 面が隠蔽さ れていたことの解決策となる。また、計測対象物の移動距 離である基線長は、図3に示す特徴点 OP1、特徴点 OP5間 の距離(1:計測対象物移動前,2:計測対象物移動後)として x軸方向 Dx、y軸方向 Dy、実移動方向 D の 3 方向から、式 (2)~(3)によりそれぞれ算出が可能であり、1度の移動動作 から3つの距離情報を取得できることになる。さらに、図 3 に示す画像上の特徴点 p_{In} 、特徴点 p_{2n} 間距離(I:計測対 象物移動前,2:計測対象物移動後、n=1,2,・・・: 任意に設定 した番号)である視差についても同様に、式(2)~(3)にて3 つの距離 dx、dy、d が算出可能になる。しかし、移動方向 と同角度 $(y=-45^\circ)$ もしくは $y=45^\circ$)で存在する面に関しては、 視差情報が取得できないため、移動角度を $\gamma=0$ °もしくは 180°とする必要がある。

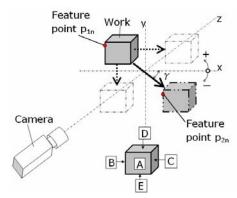


図2 隠蔽面抑制モデル

$$\begin{pmatrix} Dx \\ Dy \end{pmatrix} = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} - \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \quad \begin{pmatrix} dx \\ dy \end{pmatrix} = \begin{pmatrix} x_{1n} \\ y_{1n} \end{pmatrix} - \begin{pmatrix} x_{2n} \\ y_{2n} \end{pmatrix}$$
(2)

$$D = \sqrt{D_x^2 + D_y^2} \qquad d = \sqrt{d_x^2 + d_y^2}$$
 (3)

図3 計測対象物の基線長と視差

2.3 基線長および視差の選定

前節にて算出した基線長及び視差は、3種の値となるが、 特徴点が存在する面方向によって選定する。カメラ視野の x 軸に対し、ほぼ平行な面の特徴点を計測する場合には、 Dy、dy を、カメラ視野の y 軸に対し、ほぼ平行な面の特徴 点を計測する場合には、Dx、dx を、それ以外は、D、d を 使用することにする。これは、対象となる面の傾きに、ほ ぼ平行となる基線長および視差を採用するものである。尚、 画像視野における面の傾き情報は、エッジ処理等により面 の直線成分を抽出することで検出できる。

2.4 基線長の実時間キャリブレーション

計測対象物の移動距離を基線長とするが、移動距離を計 測できる機能を持つステージ等の利用は、コスト UP に繋 がり、低コスト化の意図に反する。したがって、図 1 に示 す計測対象物を設置したベースブロック上にシンボルマー クを付け、移動前後の各々の画像より抽出したマーク形状 の特徴点間の距離を画像処理にて計測し、基線長としてい る[4]。

3. 実験結果

計測対象と計測部

計測対象として、図 4 の機械部品を選定した。部品の外 形形状は、ノギス等にて十分に計測できる単純なものであ るが、図 4 斜線部の c 面が、他の部品に密着した条件にて、 c面に歪みがあれば密着面に対する a,b(mm)の距離は大きく 変化してしまう。c 面を他の機械部品に設置した条件にて、 a,b の距離計測を行い、システムの有効性を検証する。

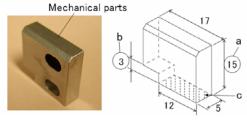


図4 計測対象

3.2 隠蔽抑制効果

前記 2.2 節の手法を採用した場合の、撮像画像を図 5 に この画像は、一般的な市販の SXGA サイズの CCD カメラと $\times 0.1$ マクロレンズの組み合わせにて、角度 $y=-45^\circ$ の方向に移動させた図 1 の機械部品を複数回撮像したもの である。図5の線画モデルに示すA~Dはそれぞれ、計測 対象物が有する平面であるが、No.1~3 までの移動の過程 において、A~Dの4面が画像上認識できることがわかる。 図 4 に示す距離 a,b は、No.1、No.3 の画像を選択すること にて計測が可能になる。

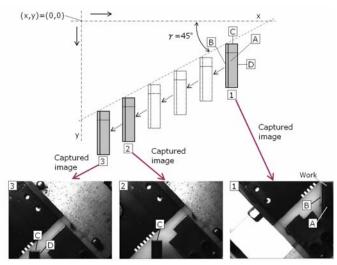


図5 機械部品の撮像画像

3.3 計測処理時間と計測値の妥当性

図 4 に示すサンプルの距離 a,b を計測し、0.36sec~ 0.43sec (同一サンプルを 10 回処理したときの時間の最大 値と最小値)の時間にて処理が可能であった。但し、本処 理時間は、計測対象物の移動時間を含まない。

また、本システムの計測値の妥当性を評価するため、本 システムおよび工場顕微鏡(×30)による計測を各 10 回行い、 その平均値の比較による妥当性評価、および偏差、標準偏 差値の比較による繰り返し計測精度評価を行う。その結果、 表 1、表 2 に示すとおり、工場顕微鏡計測値ほぼ同等の精度を持つことが確認できた。

表 1 妥当性評価結果

	Validity (mm)	
	а	b
Industrial microscope	15.056	2.953
Proposed method	15.076	2.955
Difference(a-h)	-0.02	-0.002

表 2 繰り返し精度評価結果

	Repetition accuracy (mm)	
	Deviation	Standard deviation
Industrial microscope	-0.007~0.010	0.005
Proposed method	-0.014~0.013	0.009

4. まとめと今後の課題

- (1) カメラ視野の対角線方向に移動する物体の、移動前 後の2枚の画像を用いることで、隠蔽面を低減したステレ オ計測が可能であることが確認できた。
- (2) 3 方向の基線長を計測面の向きに応じて使い分け、工 場顕微鏡計測値同等の精度を持つことが確認できた。
- (3) 1台のカメラシステムで構成できるため、省スペース 化が可能となる。また、カメラ 3 台にてステレオ計測を行う場合と比較して、約50%のコスト削減が実現できた。

今後は、計測対象物の移動方向及び、基線長・視差選択 方法の妥当性を、計測対象を拡張しながら評価し、本シス テムにおける最適値を決定していく。

参考文献

- [1]井口征士,佐藤宏介:三次元画像計測、昭晃堂(1990) [2]青木公也,金子豊久:"移動するステレオビジョンから の距離画像による3次元物体の位置・姿勢検出",信学 論(D-II) Vol.J86-D-II No.1, pp.72-83(2003)
- |山口光一郎, 秋場育子: "動きからの単眼立体視による 形状認識の線形解法について", 計測自動制御学会会で [3]出口光一郎, 秋場育子: 集 Vol.26, No.6, pp.714-720(1990)
- [4]渡辺隆, 草野洸, 藤原孝幸, 輿水大和: "変形・バリ欠 陥を含む端子リードの平坦度検査法", 電学論 D Vol.127-D, No.1, pp. 77-86(2007)