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1. Introduction
Although the supervised backpropagation learning can be

used in many successful neural applications, unsupervised
learning or self-organization is an attractive function in bi-
ological neural networks [1]. For example, Hebbian learn-
ing is a biologically based unsupervised learning [2] and the
self-organizing map (SOM) can learn a topological relation
of the environment as its network structure [3].

On the other hand, cognition using incomplete informa-
tion is an another attractive and intrinsic function in brain.
The SOM, however, needs the complete observation of the
input information.

In this paper we propose a self-organizing neural struc-
ture for acquiring feature space representation of logical
concepts from incomplete observation by using a neu-
ron model with dynamic and spatial changing weights
(DSCWs)[4]. To form the complete informational structure
of concepts, (i) a necessary connection structure is created
by an extended Hebbian rule and (ii) unnecessary connec-
tions are deleted by a self-organizing competitive learning.
An ability of the proposed neural model for acquiring the in-
formation structure is proven by using a concept formation
problem.

2. Concept Formation Problem
Human cognition can be based on an incomplete infor-

mation of a target concept. For example, a concept “apple”
is described by its attributes such as “shape is round,” “color
is red or green,” “taste is good,” and so on. Indeed it is very
difficult to explain or discover all the attributes of “apple.”

Note that each of these attributes is also a concept. Thus,
if we do not know about a concept of “shape,” we might not
be aware of the attribute “shape is round” even if we receive
this information of the shape. An interesting thing of our
cognition is that even if we could not recognize all the at-
tributes of a concept, we can still understand the concept in
our way. That is, we can understand “this is an apple” even
if we are not aware of its shape. In fact, we did not know
a concept of “mass – energy equivalence E = mc2” before
Einstein had discovered. This equivalence is also an im-
portant attribute of the concepts “mass” and “energy.” We,
however, did know and understand “mass” and “energy” be-
fore the discovery, though deepness of our understanding of
these concepts was improved after the discovery.

According to the observation described above, let us de-
fine a concept formation problem as follows. For this prob-
lem, we use a vector representation of a concept, x, defined
by a set of feature variables fx1; x2; : : : ; xng

x = [x1; x2; : : : ; xn]
T 2 <n (1)

Let us consider a set of N vector representations of N con-
cepts, S, given as S = fx1;x2; : : : ;xNg where xi; i =
1; 2; : : : ; N , are the vector representations of concepts i.
A neuron receives the complete information of concept
i, xi, but can recognize only an incomplete observation,
x̂
i = [x̂i1; x̂

i

2; : : : ; x̂
i

n
]T , through its synaptic connection

vector w = [w1; w2; : : : ; wn]
T

x̂i
j
= wjx

i

j
; j = 1; 2; : : : ; n (2)
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Let the initial weight vector be w(0) = 0 and it will be
developed to a connection structurew 6= 0. For example, at
the initial stage a neuron cannot recognize any information
through the no connection structure.

Here the goal of the ith concept formation by the ith neu-
ron is to satisfy the following condition

x̂
i �! x

i (3)

In other words, the concept formation defined in this paper
is an acquisition process of necessary attention or aware-
ness structure in order to observe the complete information
by developing connection weights wi. In this sense, the
connection weights imply a strength of attention or aware-
ness for the received information.

Here if we use unipolar binary values for the features, i.e,
xi 2 f0; 1g; i = 1; : : : ; n, then x2

i
= xi. This implies that

the following weights vector is a solution of Eq. (3)

w
i �! x

i (4)

In this case, the neural connection structure will converge
the informational structure of the concept.

Consequently, formation of a concept set S using an M -
neuron network, (M � N), can be represented by

S � SNN = fw1;w2; : : : ;wMg (5)

3. Self-Organizing Network for Concept For-
mation

Let us consider a discrete-time DSCWs neural model[4]
in which the weight vector w(r(k)) = [w1(r1(k));

: : : ; wn(rn(k))]
T is defined as a function of its spatial dis-

tance vector r(k) = [r1(k); : : : ; rn(k)]
T between the sen-

sory devices or another neuron’s axon branches and the cor-
responding target dendrites at time k. In general if a spatial
distance is sufficiently short, the synapse can be formed,
e.g, wi(ri ' 0) 6= 0. On the other hand, the synapse
cannot be formed if the distance is relatively large, e.g,
wi(ri � 0) = 0. This relation can be represented by vari-
ous monotonic decreasing functions such as an exponential
function wi(ri) = w0 exp(�ri=r0) and a sigmoid function
wi(ri) = w0=f1 + exp( ri�r0

�
)g where w0, r0, and � are

positive constants.
We use a competitive learning that selects a neuron to

represent a concept according to the output value. Here we
assume that the neural cognition is a process of matching
its inner awareness structure w with an observed informa-
tion structure x̂, not with the complete information struc-
ture x. As described in Section 2, human cognition may be
subjective, relative, and independent of the total amount of
awareness W =

P
n

i=1 jwij. In this sense the neural outputs
yj , j = 1; : : : ;M , as a result of the cognition process for
concept i can be defined as

yj(k) =
1

W j(k)

nX
l=1

x̂i
l
(k) =

(wj(r(k)))Txi(k)

W j(k)
(6)

Then the neural outputs are re-defined as yj(k) = 0; (j 6=
c), and yc(k) = yc(k) where the neuron c with the largest
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output among the neural network satisfies

c = argmax
j

yj(k) (7)

The competitive learning rule with an incomplete observed
information x̂, instead of the complete information x, can
be defined as8<
:

wc

j
(k + 1) = wc

j
(k) + [x̂j(k)� wc

j
(k)]

= wc

j
(k)[1 + (xj(k)� 1)]

wi

j
(k + 1) = wi

j
(k); (i 6= c)

(8)

where  > 0 is a learning constant. The learning can be
achieved by changing the distance. In the case of  = 1 and
wc

j
(k) = 1, note that if x̂j(k) = 1, that is xj(k) = 1, then

this feature is needed to be recognized and thus the connec-
tion structure will not be changed wc

j
(k + 1) = 1. On the

other hand, if x̂j(k) = 0, that is xj(k) = 0, this feature is
an unnecessary information and thus this connection should
be disappear wc

j
(k + 1) = 0. However, if wc

j
(k) = 0, this

learning rule cannot change this weight.
The creation of a new connection can be achieved by the

following extended Hebbian rule for structural adaptation
given as

rji(k + 1) = rji(k)� �rji(k)xi(k)yj(k)

= rji(k)(1� �xi(k)yj(k)) (9)

where � > 0 is a growing constant and xi and yj are outputs
of sensory and cognitive neurons, respectively. Here, if the
two neurons i and j fire simultaneously, the distance rji(k+
1) = rji(k)(1 � �). On the other hand, they do not fire
simultaneously, the distance will not change. For simplicity,
let � = 1, xi 2 f0; 1g, yc = 1, and yj 6=c = 0 then

rji(k + 1) =

�
0; (xi(k)yc(k) = 1)
rji(k); (xi(k)yj(k) = 0)

(10)

Note that, using the monotonic decreasing functions w(r),
the changes in distances affect the weights value.

To get the solutions given by Eqs. (4) and (5), a self-
organizing algorithm for the DSCWs model is now pro-
posed. Let us consider the unipolar binary case for features
of the concept vector x and the weight vector w; that is,
xi; wi 2 f0; 1g.

1) Initialize iteration k = 0, the number of neurons
m(0) = 1, and the connection vector jjw1(0)jj = 0.

2) Select one concept vector x
i(k) 2 S; i(k) 2

f1; 2; : : : ; Ng and input it to the neural network.

3) For the concept xi(k), select a candidate neuron c ac-
cording to Eq. (7) and re-define the outputs.

4) Self-organizing the weights according to the the fol-
lowing condition

Case 1: If the candidate output yc is equal to 1, create a
new attention weight wc

i
so that x̂i(k) = 1 by the

extended Hebbian rule in Eq. (10) if possible.
Case 2: If 0 < yc < 1, create new neuron m(k) + 1

with the same weight vector wm(k)+1 = w
c and

m(k) + 1 �! m(k). Then c = m(k) and learn
the weight to delete unnecessary connections by
using Eq. (8).

Case 3: In the case of yc = 0 if there is a neuron with-
out any connections, then select this neuron for
a candidate. Otherwise, create a new candidate
neuron and m(k) + 1 �! m(k). Then create a
randomly selected new attention weight for this
candidate by Eq. (10).

5) m(k + 1) = m(k), k! k + 1 and return to Step 2).

4. Discussions
A concept formation ability of the proposed network is

summarized in the following theorem.
Theorem 1 For a unipolar binary concept set S =
fx1;x2; : : : ;xNg, there exists a self-organizing network
with M neurons, (M � N), such that
x
i = w

ji ; i = 1; 2; : : : ; N; ji 2 f1; 2; : : : ;Mg
Proof: In Step 3), a candidate neuron c is selected for a
concept vector xi. Then even if yc(xi;wc(k)) < 1,

yc(x
i;wc(k + 1)) = 1 (11)

in Step 4). This is because we can delete only the wrong
connections for the target concept by using the competitive
learning rule. Also if yc(k) = 1, then jjwc(k + 1)jj >
jjwc(k)jj except for wc(k) = x

i by using the Hebbian
rule that can create only the correct connection; there is no
wrong connection weight for the candidate. That is,

jjxi �wc(k + 1)jj < jjxi �wc(k)jj (12)

except for wc(k) = x
i. Thus if this neuron is a candidate

only for concept i
w
c �! x

i (13)
Otherwise, if this neuron c will also be a candidate (i.e.

yc = 1) for another concept xj , j 6= i and jjxj jj > jjwcjj,
then wc �! x

j . Once wc converges to xj , an another
candidate neuron c0(6= c) for concept i will not be a candi-
date for concept j since neuron c is the only candidate for
concept j. Thus after all the concepts like concept j have
their own candidates, the weight of a candidate neuron c0

will converge to concept i

w
c
0

�! x
i (14)

Therefore if M is sufficiently large
S � SNN = fw1;w2; : : : ;wMg �

In addition to this ability, a major difference between the
Kohonen’s self-organizing map (SOM)[3] and the proposed
method given in Eqs. (7) and (8) is completeness of the input
information. SOM supposes that the complete information
of the input x can be given, while only an incomplete obser-
vation of the input, x̂, is available to use in our method. In
the sense of a hypothesis that human cognition is based on
an incomplete information, the proposed network provides
a better model of human cognition.
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