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1 Introduction

One of the most recent and novel developments in
pattern classification is the concept of dissimilarity-based
classifiers (DBCs) proposed by Duin and his co-authors
[1]. DBCs are a way of defining classifiers between the
classes, which are not based on the feature measure-
ments of the individual patterns, but rather on a suit-
able dissimilarity measure between them [2]. The prob-
lem with this strategy is that we need to select a repre-
sentative set of data that is both compact and capable
of representing the entire data set. However, it is diffi-
cult to find the optimal number of prototypes and, fur-
thermore, selecting prototype stage may potentially lose
some useful information for discrimination. Recently,
to avoid these problems, we proposed an alternative ap-
proach, where we used all available samples from the
training set as prototypes, and subsequently apply di-
mensionality reduction schemes [3]. For the purpose of
finding the most appropriate reduction method, in this
paper, we consider a way of applying a newly developed
dimensionality reduction scheme [4] after computing the
dissimilarity matrix with the entire training samples.

2 Dissimilarity Representation

A dissimilarity representation of a set of samples,
T = {xi}n

i=1 ∈ <d, is based on pairwise comparisons
and is expressed, for example, as an n×m dissimilarity
matrix DT,Y [·, ·], where Y = {y1, · · · ,ym}, a prototype
set, is extracted from T , and the subscripts of D repre-
sent the set of elements, on which the dissimilarities are
evaluated. Thus, each entry DT,Y [i, j] corresponds to
the dissimilarity between the pairs of objects 〈xi, yj〉,
where xi ∈ T and yj ∈ Y . Consequently, an object xi

is represented as a column vector as follows:

[d(xi, y1), d(xi, y2), · · · , d(xi, ym)]T , 1 ≤ i ≤ n. (1)

Here, the dissimilarity matrix DT,Y [·, ·] is defined as a
dissimilarity space, on which the d-dimensional object,
x, given in the feature space, is represented as an m-
dimensional vector δY (x).

To select the representative set that is compact and
capable of simultaneously representing the entire data
set, Duin and colleagues [1] discussed the following meth-
ods : Random, RandomC, KCentres, ModeSeek, Lin-
Prog, FeatSeal, KCentres-LP, and EdiCon. The details
of these methods are omitted here in the interest of com-
pactness, but can be found in the existing literature,
including [1] and [2].

3 Dimensionality Reduction Schemes

In the proposed method, we use a strategy of reduc-
ing the dimensionality after computing the dissimilarity
matrix with the entire training samples. With regard to
reducing the dimensionality of the dissimilarity matrix,
we make use of the well-known dimensionality reduction
schemes (DRSs) proposed in the literature, such as di-
rect LDA (DLDA) [5] and heteroscedastic LDA (linear
dimensionality reduction via a heteroscedastic extension
of LDA) (HLDA) [4].

In LDA, we use the concept of a within-class scat-
ter matrix, SW , and a between-class scatter matrix,
SB , to maximize a separation criterion, such as J =
tr(S−1

W SB). The reasoning behind making J as large as
possible is to look for a direction that maximizes the dif-
ference between the two projected means in SB , while
minimizing the variance of the individual classes SW .

The separation criterion can also be extended as
J = tr{(ASW AT )−1(ASEAT )}, where A is a trans-
formation matrix and SE is the square of Euclidian dis-
tance: (m1 −m2)(m1 −m2)T , where m1 and m2 are
the means of class 1 and class 2, respectively. In the
heteroscedastic extension of LDA, on the other hand,
the square of Euclidian distance SE is replaced with
the Chernoff distance SC [4], which is defined as:

SC = S−
1
2 (m1 −m2)(m1 −m2)T S−

1
2

+
1

α(1− α)
(log S − α log S1 − (1− α) log S2).

Here, S1 and S2 are the scatter matrices of class 1 and
class 2; S = αS1 + (1 − α)S2; α is the probability of
class 1.

4 Schema for the Proposed Solution

To solve the classification problem, we first compute
the dissimilarity matrix with the entire training sam-
ples, and then reduce its dimensionality of the dissimi-
larity matrix with a DRS; finally, DBCs are designed on
the dissimilarity space to reduce the classification error
rates. The proposed algorithm for DBCs is summarized
in the following:

1. Select the entire training samples T as the repre-
sentative set Y .

2. Using Eq. (1), compute the dissimilarity matrix,
DT,T [·, ·], in which each individual dissimilarity is com-
puted on the basis of the measures described in [1], [2].
After computing the DT,T [·, ·], reduce its dimensionality
by invoking a DRS.
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3. For a testing sample z, compute a dissimilarity
column vector, δY (z), by using the same measure used
in Step 3.

4. Achieve the classification by invoking a classifier
built in the dissimilarity space, and operating it on the
dissimilarity vector δY (z).

The rationale of this strategy is presented in a later
section together with the experimental results.

5 Experimental Results

The proposed method has been tested and compared
with conventional methods. This was done by perform-
ing experiments on the well-known benchmark database,
namely, “UMIST” face database 1.

After computing the dissimilarity matrix, we reduced
the dimensionality of the matrix with a DRS, such as
DLDA [5] or HLDA [4]. In the two LDA-based meth-
ods, we reduced the dimension n−1 to c−1, where n is
the total number of training samples and c is the num-
ber of classes. In the conventional methods of Random,
RandomC, KCentres, and ModeSeek, on the other hand,
we selected c− 1, c, c, and c samples from the training
data set as the prototypes of DBCs.

To maintain the diversity between the dissimilarity-
based classifications, we experimented different classi-
fiers, such as the k-nearest neighbor classifiers (1-NN, 3-
NN, 5-NN, 7-NN), the nearest mean classifiers (NMC),
the support vector classifier (SVC), and the regularized
normal density-based linear/quadratic classifiers (RLDC
and RQDC). These classifiers were implemented with
PRTools 2. In Whole method, the entire training data
set T is selected as a representative subset Y . The result
of this method is included as a reference.

Table 1 shows a comparison between the classifica-
tion accuracy rates (%) (for the process of prototype
selection or dimensionality reduction) of DBCs for the
UMIST database.

From Table 1, it is clear that there is a considerable
improvement in the achieved performances. An exam-
ple of this is the classification accuracies of the Random
and HLDA methods. For the eight classifiers, namely,
1NN, 3NN, 5NN, 7NN, NMC, RLDC, QLDC, and SVC,
the classification accuracy rates of the Random method
are, respectively, 98.00, 98.67, 98.67, 97.33, 95.33, 95.33,
99.33, 98.67(%), while the classification accuracies of
the HLDA method are, respectively again, 99.33, 100,
99.33, 99.33, 99.33, 99.33, 100, 100(%). From this con-
sideration, the reader can observe that the classification
performances of the classifiers are improved with the
HLDA method. It is also interesting to point out that
the classification accuracies of the parametric classifiers,
such as RLDC and RQDC, are considerably improved.
The same characteristic could also be observed in the
other methods.

1http://images.ee.umist.ac.uk/danny/database.html
2PRTools is a MATLAB toolbox for pattern recognition (refer

to http://www.prtools.org/).

Table 1: A comparison between the classification accu-
racy rates (%) of DBCs for the UMIST database in the
conventional and LDA based methods.

Experimental 1NN 3NN 5NN 7NN
Methods NMC RLDC QLDC SVC
Whole 99.33 99.33 99.33 99.33

99.33 99.33 99.33 99.33
Random 98.00 98.67 98.67 97.33

95.33 95.33 99.33 98.67
RandomC 99.33 99.33 98.00 97.33

97.33 98.00 99.33 100
KCentres 98.67 98.67 98.67 98.00

96.00 88.00 93.00 98.67
ModeSeek 99.33 99.33 99.33 99.33

99.33 99.33 99.33 98.67
DLDA 99.33 99.33 99.33 99.33

99.33 99.33 99.33 99.33
HLDA 99.33 100 99.33 99.33

99.33 99.33 100 100

6 Conclusion

In this paper, we proposed a method of reducing the
dimensionality of the dissimilarity representation. The
proposed scheme was experimented and compared with
the conventional methods for the well-known benchmark
facial images. Our experimental results demonstrated
the possibility that the proposed method could be used
efficiently for dissimilarity-based classifiers (DBCs). The
research concerning the reduction of the processing CPU-
times is a future aim of the authors.
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