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1 Introduction

One of the most recent and novel developments in
pattern classification is the concept of dissimilarity-based
classifiers (DBCs) proposed by Duin and his co-authors
[1]. DBCs are a way of defining classifiers between the
classes, which are not based on the feature measure-
ments of the individual patterns, but rather on a suit-
able dissimilarity measure between them [1]. In this
strategy, therefore, we need to measure the inter-pattern
dissimilarities for all the training samples to ensure there
is no zero distance between objects of different classes.
In image classification tasks, such as face recognition,
one of the most intractable problems is the distortion
and lack of information caused by the differences in
face directions and sizes. To overcome these problems,
we employ a way of measuring the dissimilarity dis-
tance between two images of an object using a dynamic
programming technique, such as dynamic time warp-
ing [2]. On the other hand, combination systems which
fuse “pieces” of information have received considerable
attention because of its potential to improve the per-
formance of individual systems [3]. Thus, to increase
the classification accuracy of DBCs further, we also use
a method of simultaneously employing multiple fusion
strategies in representing features as well as in designing
classifiers [4].

2 Dissimilarity-Based Classifications

A dissimilarity representation of a set of samples,
T = {xi}n

i=1 ∈ <d, is based on pairwise comparisons
and is expressed, for example, as an n×m dissimilarity
matrix DT,Y [·, ·], where Y = {y1, · · · , ym}, a prototype
set, is extracted from T , and the subscripts of D repre-
sent the set of elements, on which the dissimilarities are
evaluated. Thus, each entry DT,Y [i, j] corresponds to
the dissimilarity between the pairs of objects 〈xi,yj〉,
where xi ∈ T and yj ∈ Y . Consequently, an object xi

is represented as a column vector as follows:

[d(xi,y1), d(xi,y2), · · · , d(xi, ym)]T , 1 ≤ i ≤ n. (1)

Here, the dissimilarity matrix DT,Y [·, ·] is defined as a
dissimilarity space, on which the d-dimensional object,
x, given in the feature space, is represented as an m-
dimensional vector δY (x).

To compute the dissimilarity matrix, we first select
the representatives using a prototype selection method,
such as Random, RandomC, KCentres, ModeSeek, and
so on, or using all training samples as the representative.

Then, we measure the dissimilarities between them us-
ing the measuring systems, such as Euclidean distance,
Hamming distance, the regional distance, and the spa-
tially weighted gray-level Hausdorff distance measures.
The details of the DBCs are omitted here in the inter-
est of compactness, but can be found in the existing
literature, including [1].

3 DTW and Fusion Strategies

With regard to measuring the dissimilarity of the
sample points, we prefer not to directly measure the
dissimilarity from the object points; rather, we utilize
a way of using the DTW (dynamic time warping) tech-
nique to adjust or scale the object samples. This mea-
sure of dissimilarity effectively serves as a new “feature”
component in the dissimilarity space.

Consider the two sequences of s = (x1, · · · , xn) ∈ T
and t = (x1, · · · , xm) ∈ T , where xi is an element that
corresponds to a column vector of an image sample at
index i in an s or t sample. An alignment from s to t can
be represented by a warping w = {w(1), w(2), · · · , w(n)},
where j = w(i), j ∈ [1, m], i ∈ [1, n] means that the i-th
element in s is aligned to the j-th element in t.

To find the best warping path w that minimizes the
distance Dw(s, t), we use the the correlation coefficient
between two (sub)vectors xi and xj , ρ(xi, xj), which is
defined as: ρ(xi, xj) = cov(xi,xj)

σxi
σxj

= E((xi − µxi)(xj −
µxj )

′)/σxiσxj , where µxi and σxi are expected values
and standard deviations, respectively. Also E is the
operator for expected values.

To combine dissimilarity matrices obtained with dif-
ferent measuring systems to a new representation ma-
trix, we make use of representation combining strate-
gies, such as Average, Product, Min, and Max rules.
For example, in the Average rule, two dissimilarity ma-
trices, D(1)(T, Y ) and D(2)(T, Y ), can be averaged to
(α1D

(1)(T, Y )+α2D
(2)(T, Y )) after scaling with an ap-

propriate weight, αi, to guarantee that they all take val-
ues in a similar range. The details of the other methods
are omitted here, but can be found in [1].

4 Schema for the Proposed Solution

To solve the classification problem, we first combine
dissimilarity matrices constructed with various measur-
ing systems including the dynamic time warping for the
entire training samples, and then again combine all of
the results of DBCs designed on the combined dissimi-
larity space to reduce the classification error rates. The
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proposed algorithm for the combined DBCs is summa-
rized in the following:

1. Select the entire training samples T as the repre-
sentative set Y .

2. Using Eq. (1), compute dissimilarity matrices,
D(1)(T, Y ), D(2)(T, Y ), · · ·, D(k)(T, Y ), by using the k
different dissimilarity measures for all x ∈ T and y ∈ Y .

3. For any D(j)(T, Y ), (j = 1, · · · , l), perform clas-
sification of the input, z, with combined classifiers de-
signed on the combined dissimilarity space as follows:

3.1 Compute a dissimilarity column vector, δ(j)(z),
for the input sample z, with the same method as in
measuring the D(j)(T, Y ).

3.2 Classify δ(j)(z) by invoking a group of DBCs as
the base classifiers designed with n m-dimensional vec-
tors in the dissimilarity space. The classification results
are labeled as class1, class2, · · ·, respectively.

4. Obtain the final result from the class1, class2,
· · ·, by combining the base classifiers designed in the
above step, where the base classifiers are combined to
form the final decision in the fixed or trained fashion.

The rationale of this strategy is presented in a later
section together with the experimental results.

5 Experimental Results

The proposed method has been tested and compared
with conventional methods. This was done by perform-
ing experiments on three well-known benchmark databases,
namely AT&T (shortly, A) 1, Yale (shortly, Y) 2, and
RoadSign (shortly, R) [5].

We first combined two dissimilarity matrices mea-
sured with Euclidean distance (ED) and dynamic time
warping (DTW) techniques to a new representation ma-
trix (FUD). Then we combined again all of the results of
the base classifiers, which had been trained in the new
representation matrix, in fixed or trained fashion.

Three base classifiers denoted as nmc, ldc, and knnc
were implemented with PRTools 3. Then, two com-
biners (a fixed and a trainable) were also implemented
with PRTools and named as prodc and meanc, respec-
tively. Table 1 shows a comparison between the classi-
fication accuracy rates (%) of combined DBCs for the
three databases.

From Table 1, it is clear that there is an improvement
in the achieved classification accuracies. An example
of this is the classification accuracies of the meanc for
AT&T (A) database. For the three classifiers trained
in the three dissimilarity spaces, namely ED, DTW,
and FUD, the classification accuracy rates are 95.10(%),
89.40(%), and 97.00(%), respectively. The same charac-
teristic could also be observed from the other databases,
such as Yale and RoadSign. From this consideration, the
reader can observe that the classification performances
of DBCs trained in FUD are usually better than those
of DBCs built in ED and DTW spaces, which leads to

1http://www.cl.cam.ac.uk/Research/DTG/attarchive/ face-
database.html

2http://www1.cs.columbia.edu/ belhumeur/pub/images/yale-
faces

3PRTools is a Matlab toolbox for pattern recognition.

Table 1: A comparison of the classification accuracy
rates (%) of combined DBCs trained with the Euclidean
(ED), dynamic time warping (DTW), and fusion (FUD)
based methods for the three databases.

data dis- base classifiers combiners
sets space nmc ldc knnc prodc meanc

ED 73.900 95.100 89.000 95.100 95.100
A DTW 81.700 89.400 92.400 89.400 89.400

FUD 77.200 97.000 90.300 97.000 97.000
ED 63.333 80.667 69.667 80.667 80.667

Y DTW 65.444 80.000 70.667 80.222 80.111
FUD 64.111 81.444 70.222 81.333 81.444
ED 99.948 99.991 99.982 99.991 99.991

R DTW 99.948 99.993 99.985 99.993 99.992
FUD 99.948 99.994 99.984 99.994 99.994

the conclusion that combining dissimilarity matrices is
helpful. It is also interesting to point out that the scal-
ing factors, α1:α2, used for the AT&T, Yale, and Road-
Sign databases are 0.75 : 0.25, 0.35 : 0.65, and 0.7 : 0.3,
respectively. Thus, the problem of automatically select-
ing an optimal scaling factor αi for a given application
remains unresolved.

6 Conclusion

In this paper we studied a method of using the dy-
namic programming and multiple fusion strategies for
optimizing dissimilarity-based classification (DBCs). The
proposed scheme was experimented and compared with
the conventional methods for the well-known benchmark
image databases. Our experimental results demonstrated
the possibility that the proposed method could be used
efficiently for optimizing DBCs. The research concern-
ing the selection of an optimal scaling factor is a future
aim of the authors.

Acknowledgments This work was supported by
the Korea Research Foundation Grant funded by the
Korean Government(KRF-2008-013-D00115). This pa-
per was partially presented at the IEEK Summer Con-
ference 2009, in Jeju, Korea, July 2009.

References

[1] E. Pekalska, R. P. W. Duin, The Dissimilarity Rep-
resentation for Pattern Recognition: Foundations
and Applications, World Scientific Publishing, Sin-
gapore (2005).

[2] S. -W. Kim, J. Gao, A dynamic programming tech-
nique for optimizing dissimilarity-based classifiers,
Proc. of SSSPR’08, LNCS-5342 664–673 (2008).

[3] R. I. Kuncheva, Combining Pattern Classifiers -
Methods and Algorithms, John Wiley & Sons, New
Jersey (2004).

[4] S. -W. Kim, R. P. W. Duin, On optimizing
dissimilarity-based classifier using multi-level fusion
strategies, Journal of Institute of Electronics Engi-
neers of Korea, 45-CI(5) 15–24 (2008) (In Korean).

[5] P. Paclik, J. Novovicova, P. Somol, P. Pudil, Road
sign classification using Laplace kernel classifier,
Patt. Recogn. Lett., 21(13-14) 1165–1173 (2000).

106

FIT2009（第8回情報科学技術フォーラム）

（第3分冊）




