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Fig. 1 Three representative cases of TOF sinograms 

and training labels 
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1. Introduction 
Early diagnosis of dementia has become an urgent issue 

due to the aging society. A dedicated brain positron 
emission tomographic (PET) system which can be 
expected to generate images of the accumulation status of 
specific proteins in the brain that are the causative agents 
of Alzheimer's disease is currently under development, 
solving problems such as the size and cost of whole-body 
PET/CT devices [1].  

In conventional PET/CT devices, the attenuation 
information is obtained by a well-aligned CT device, 
which decides attenuation correction factors (ACF) of 
every single pixel and apply the factor to activity maps. It 
improves activity intensity due to radiation attenuation 
induced by dense materials in patients' brain. However, the 
dedicated brain PET system is not supposed to use a CT 
device because of the size, cost, etc. Therefore, a reliable 
approach for ACF acquisition without aligned CT is highly 
desired. Maximum likelihood attenuation correction 
factors (MLACF), a simultaneous reconstruction algorithm, 
has the advantage of providing ACF directly from time-of-
flight (TOF) PET emission data without prior information 
on the attenuation to reconstruct activity maps by applying 
ACF to the activity map in each iteration, it suffers from 
slow convergence, high computational and time 
complexity [2]. 

In this work, a novel approach is proposed to estimate 
ACF sinogram directly from TOF PET emission data 
using a deep neural network. 

2. Materials and Methods 
We used 20 anatomical models from the BrainWeb 

database to create PET emission data. Each subject model 
consists of a set of 3D tissue membership volumes 
including 11 tissue classes. We created activity and 
attenuation maps served as the ground truth depending on 
the tissue classes of each voxel. We converted the 3-D 
volumes into 2-D slices and added five patterns of random 
activity to activity maps. TOF sinograms and ACF 

sinograms were generated using forward projection from 
each pair of ground truth activity and attenuation map. 
TOF sinogram was organized in five sinograms and each 
sinogram was for one TOF bin. Poisson noise was added 
to the noise-free TOF sinograms to simulate PET emission 
data in the real case. 15,1, and 4 anatomical models were 
in the training, validation, and testing dataset, respectively. 
Three samples of the training data are plotted in Fig. 1. 

A modified high-resolution compact network is utilized 
to estimate ACF sinogram from TOF sinograms, as shown 
in Fig. 2. It consists of 20 convolutional layers with 3×3 
kernels, inspired by a compact network for volumetric 
image segmentation [3]. The first 7 layers are designed to 
extract low-level features. The following 6 and 6 layers are 
used to encode middle and high-level features with a 
dilated factor of 2 and 4. The last convolutional layer use 1 
kernel and output a ACF sinogram. Different from the 
compact network, we concatenate the features between 
two convolutional layers instead of simply add them 
together to preserve more features in the earlier stage. We 
use 2-D 3×3 kernels instead of 3-D larger kernels to 
reduce parameters and accelerate the convergence of the 
model. The dilated factors are added to enlarge the 
receptive field and generate high-resolution features. 

The network was implemented using Tensorflow 2.0 
platform. The mean squared error (MSE) between the 
prediction and label was selected as the loss function. The 
modified high-resolution compact network was compared 
with MLACF algorithm with 50 iterations. For 
quantitative evaluation, we select normalized root mean 
square error (NRMSE), structural similarity index measure 
(SSIM), and peak signal-to-noise ratio (PSNR) for 
comparisons. In order to observe the attenuation 
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coefficients in image space, we use the predicted ACF as 
inputs of maximum likelihood expectation maximization 
(MLEM) algorithm to reconstruct the attenuation map. 

3. Results 
As shown in Fig. 3 and Table 1, the proposed method 

with TOF sinograms as inputs demonstrates superior 
performance compared with MLACF and using 
projections without TOF information. From qualitative 

results, we observe that our approach is capable of 
predicting attenuation coefficients closer to the ground 
truth, while both ACF and attenuation map of MLACF 
have a high level of noise. Additionally, this approach 
achieves the lowest error with a NRMSE of 0.08 and the 
highest image quality of ACF with a SSIM of 0.95 and a 
PSNR of 30.95 dB, as indicated in Table 1. 

Table 1 NRMSE, SSIM and PSNR comparisons 
 

NRMSE SSIM PSNR 
MLACF 0.48 0.37 14.55 

Proposed-nonTOF 0.16 0.92 25.17 
Proposed-TOF 0.08 0.95 30.95 

4. Discussion and Conclusion 
From data analysis, we find that the modified high-

resolution compact network with TOF information 
predicts ACF more precisely. The ACF predictions of our 
approach can be applied to other reconstruction methods 
as complementary information.  

In a dedicated brain PET system, an accurate ACF 
generation approach is highly desired in the absence of 
concurrent CT scanning. In this work, different TOF 
sinogram bins pertinent to the same slice are fed into a 
modified high-resolution compact network to estimate a 
single ACF sinogram associated with the same slice. 
Compare with MLACF, the proposed method achieves a 
lower NRMSE and a higher SSIM and PSNR. 
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Fig. 2 High-resolution compact network architecture for ACF generation 

 

 

 
Fig. 3 Three predictions using different methods 
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