
 Automatic Property and Its Value Weight Factors for Scalable

Ontology Instance Matching

Rudra Pratap Deb Nath
*1 Md. Hanif Seddiqui

*2
 Masaki Aono

*1

1 ．Introduction

 Ontologies, defined as “explicit formal specification of a

shared conceptualization”, have become the backbone to enable

the fulfillment of the semantic web vision. The rising demand of

sharing data and digital resources within same or across

organizations and heterogeneous sources has obtained a novel

attention on the research issues of ontology alignment. However,

ontology matching approaches and tools are gaining more and

more significance in the framework of semantic web applications,

where not only traditional matching at the schema level, but also

and especially matching at the instance level is becoming

essential to support discovery and management of different

individual, with the introduction descriptions referring to the

same real-world entity [1]. Ontology Instance Matching (OIM)

compares different individuals within same or across

heterogeneous knowledge bases to identify the same real world

object. OIM problem has been widely investigated in several

application domains where it is known with different names such

as identity recognition, record linkage, entity resolution etc. OIM

is also equally important into ontology population [2].

 As the detection of mapping on schema level directly affect

instance level matching, in this research, ontology schema

matching and OIM work together. In schema level matching, our

scalable anchor flood algorithm [4] is used. An instance can be

described with the ontology concepts, properties and their values

associated with it. However, every property doesn‟t have equal

contribution to identify an instance uniquely. Some properties

have more influence in univocal instance identification. For

example, in spite of having different values for the property

“bankAccount” two individuals of type “Employee” are same if

they have common values for “socialId”. So, automatically

assigning a weight to each of the property is most important in

OIM. Again, measuring the contribution of a property value in

univocal instance identification is also more essential. Suppose,

several individuals of “Person” type have contain common value

namely „Hanif Seddiqui‟ for the property “full_Name” while

only one individual contains value „Masaki Aono‟ for that

property. Therefore, value „Masaki Aono‟ should have more

influence in matching process than value „Hanif Seddiqui‟.

Hence, it is also equally important to impose a weight

automatically to each of the property values

Recently, several individual groups are also working to create

billions of triples to represent ontology instances of semantic web

which also raises the challenge of scalability in instance

matching assignment. Here, we also introduce a naïve approach

to make our instance matcher scalable by dividing the knowledge

base into several smaller groups. Using owl disjointness relation,

we produce separate clusters of related concepts from ontology.

Then, only the instances of same category and same cluster of

one ontology will be compared to the corresponding category and

cluster of other ontology. The rest of the paper is organized as

follows: Section 2 describes our instance matching approach.

Section 3 outlines the experiment and evaluation. Final remarks

and further scopes of improvement are discussed in section 4.

2．Instance Matching Algorithm

In this research, we augment our state of the art instance

matcher [2] by computing similarity of two candidate instances

based on weight factors of the properties and the property values

related to instances. We also introduce a novel technique for

addressing scalability issues.

2.1 Property and its Value Weighting

Automatically assigning more relevance to those properties

that are considered as more significant for individual

identification during the matching process is one of the key

challenging issues in instance matching. Our basic hypothesis of

weight factor measurement is that a property, for which instances

contain more unique or distinct values, could have higher

identification capability; “the more the uniqueness, the more the

weight factor”. We define the weight factor of each property of

an ontology concept C, used in a knowledgebase as follows:

 | | | | (1)

Where Wp is the property weight, | | is the number of

instances where each contains unique value for property and | |

represents the number of instances of the concept C.

Again, measuring the contribution of a property value in univocal

instance identification is also more essential. Property value

weight factor rewards the value that has no repetition and

penalizes those values that have more repetition. The weight

factor of a property value is defined by following equation.

 | | (2)

Where is the weight factor of the value of property p.

| | is the number of instances containing the value for

property . Now, we consider both property level and value level

weight factors in the affinity measurement of the SLCs [2] of two

instances (in Eq.3). Semantic Link Cloud (SLC) defines an

instance by all linked concepts, properties and their instantiations

which are related to specify the instance sufficiently.

∑ (())

∑ ∑

 (3)

E(p,q) returns 1 if string similarity of p and q is greater than a

predefined threshold otherwise 0.
*1. Toyohashi University of Technology, Aichi, Japan.

*2. University of Chittagong, Chittagong, Bangladesh.

FIT2012（第 11 回情報科学技術フォーラム）

Copyright © 2012 by
The Instiute of Electronics, Information and Communication Engineers and
Information Processing Society of Japan All rights reserved.

 313

F-023

(第2分冊)

Fig 1. Instance Matching Algorithm.

Fig.1 describes a sample flow of the matching algorithm. Func-

tion generateSLC(ins, ab) collects an SLC against an instance

from ABox ab.ABox contains all instances and their information

of ontology.

2.2 Scalability in Instance Matching

 Scalability is increasingly becoming an indispensable feature in

instance matching. The motto of scalability is to accurately select

a subset of instances that are more likely to be similar to an input

instance, avoiding comparing the input instance against all the

instances within the ontology. By using owl disjoint classes

relation in an ontology, we produce a set of concept level clusters

where each cluster includes related concepts by eliminating

disjoin concepts and their descendants in ontology hierarchy. We

use our anchor flood algorithm to get concept level cluster

alignment. Then we apply our scalable instance matcher [2] only

the concepts of corresponding cluster across ontologies. For

each property of a concept, a category factor is defined by

following equation.

 | | | | ⁄ (4)

where | | and | | are the number of instances

containing unique value and value for property respectively.

candidatePropertySet Sp of a concept is defined by including

those properties whose have lower value than a defined threshold

value. For two concepts across ontologies, we assign a

categoryPropertySet S by taking the intersection of their

candidatePropertySets.

Fig 2. Scalable Instance Matching (SIM) Algorithm.

Fig.2 shows the sample flow of SIM algorithm. For each aligned

concept level clusters [at line 1], our SIM only efforts to compare

instances of one concept of a cCluster against all instances of the

concept of corresponding cCluster if their categoryPropertySetS

has no member and both concepts have at least one common

property [at lines 3 &4]. P1 and P2 indicate the property set of

concepts c1 and c2 respectively.Concepts, those S has no element

and have no common property will not compare the instances of

each other [at line 5]. If the concepts‟ S have elements than the

instances of both concepts will be categorized according to the

values of S. For achieving more accuracy, we put the instances

that contain null value for the S in another cluster. Now, only

instances of same category [at line 10] will be compared by

calling our previous instancMatch function.

3．Experiment and Evaluation

ISLab Instance Matching benchmark dataset are used for

evaluation. It is a collection of OWL ontologies consisting of 29

concepts, 20 object properties, 12 data properties. IIMB 2010 is

created by extracting data from Freebase, an open

knowledgebase that contains about 11 million real world object

containing information of movies, books, celebrations, company

etc. Fig. 3 exhibits the performance of our KDE-SKEIM system

over other methods attended in OM-2010 [3] workshop namely,

ASMOV, CODI and RiMOM [3] in terms of recall-precision.

Fig 3. Recall-Precision Graph of Systems.

4．Conclusion

 Automatic Property and Its value weighting provide better

outcomes. Our scalable approach also boasts in terms of time

complexity. We would like to evaluate our system with large

repositories like DBpedia and DBLP. Our future plan also

includes fitting the system with LOD (Linked Open Data) project.

 References

[1]. S. Castano, A. Ferrara, S. Monanelli, and G. Varse ,

“Ontology and Instance Matching, Knowledge driven

multimedia information extraction and ontology evolution” ,

LNCS 2011 volume 6050/2011.

[2] R. P. D. Nath, M. H. Seddiqui and M. Aono, “An Efficient M-

ethod for Ontology Instance Matching”, JSAI, Yamaguchi, 2012

[3] J. Euzenat, A. Ferrara, C.Meilicke et al“Results of the

Ontology Alignment Initiative” Proceeding Ontology Matching

2010.

[4] M. H. Seddiqui and M. Aono, “An Efficient and Scalable

Algorithm for Segmented Alignment of Ontologies of Arbitrary

Size.” Journal of Web Semantics, Elsevier, page 344-356, 2009

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

KDE-SKEIM

ASMOV

CODI

RiMOM

Pr
ec
is
io
n

Recall

Algorithm:

scalableInstancMatch (ABox ab1, ABox ab2, Alignment A)

1. for each a(b1,b2) A| b1 cClusters(ont.1) b2 cClusters(ont. 2)

2 . for each (c1,c2) |c1 concept(ont.1 b1) c2 concept(ont.2 b2)

3. if (catagoryPropertySet S ==null && |P1∩P2| !=0)

4. IM=IM instanceMatch (C1,C2, A)

5. elseif (catagoryPropertySet S ==null && |P1∩P2|==0) continue

6. else

7. iCluster s1= classifyInstances (c1, ab1,categoryPropertySet S)

8. iCluster s2= classifyInstances (c2, ab2 ,categoryPropertySet S)

9. for each category cid

10. if cid (iClusterm iCluster s1 iClustern iCluster s2)

11. IM=IM instanceMatch (iClusterm , iClustern , A)

12. returnIM

Algorithm:

instancMatch (ABox ab1, ABox ab2, Alignment A)

1. for each insi ab1

2. slci= generateSLC(insi, ab1)

3. for each insj ab2

4. slcj=generateSLC(insj,ab2)

5. if IA(slci,slcj) ≥

6. imatch=imatch makeAlign (insi, insj)

7. return imatch

FIT2012（第 11 回情報科学技術フォーラム）

Copyright © 2012 by
The Instiute of Electronics, Information and Communication Engineers and
Information Processing Society of Japan All rights reserved.

 314

(第2分冊)

