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1 ．Introduction  

   Ontologies, defined as “explicit formal specification of a 

shared conceptualization”, have become the backbone to enable 

the fulfillment of the semantic web vision. The rising demand of 

sharing data and digital resources within same or across 

organizations and heterogeneous sources has obtained a novel 

attention on the research issues of ontology alignment. However, 

ontology matching approaches and tools are gaining more and 

more significance in the framework of semantic web applications, 

where not only traditional matching at the schema level, but also 

and especially matching at the instance level is becoming 

essential to support discovery and management of different 

individual, with the introduction descriptions referring to the 

same real-world entity [1]. Ontology Instance Matching (OIM) 

compares different individuals within same or across 

heterogeneous knowledge bases to identify the same real world 

object. OIM problem has been widely investigated in several 

application domains where it is known with different names such 

as identity recognition, record linkage, entity resolution etc. OIM 

is also equally important into ontology population [2].  

  As the detection of mapping on schema level directly affect 

instance level matching, in this research, ontology schema 

matching and OIM work together. In schema level matching, our 

scalable anchor flood algorithm [4] is used. An instance can be 

described with the ontology concepts, properties and their values 

associated with it. However, every property doesn‟t have equal 

contribution to identify an instance uniquely. Some properties 

have more influence in univocal instance identification. For 

example, in spite of having different values for the property 

“bankAccount” two individuals of type “Employee” are same if 

they have common values for “socialId”. So, automatically 

assigning a weight to each of the property is most important in 

OIM. Again, measuring the contribution of a property value in 

univocal instance identification is also more essential. Suppose, 

several individuals of “Person” type have contain common value 

namely „Hanif Seddiqui‟ for the property “full_Name” while 

only one individual contains value „Masaki Aono‟ for that 

property. Therefore, value „Masaki Aono‟ should have more 

influence in matching process than value „Hanif Seddiqui‟. 

Hence, it is also equally important to impose a weight 

automatically to each of the property values  

Recently, several individual groups are also working to create 

billions of triples to represent ontology instances of semantic web 

which also raises the challenge of scalability in instance 

matching assignment. Here, we also introduce a naïve approach 

to make our instance matcher scalable by dividing the knowledge 

base into several smaller groups. Using owl disjointness relation, 

we produce separate clusters of related concepts from ontology. 

Then, only the instances of same category and same cluster of 

one ontology will be compared to the corresponding category and 

cluster of other ontology.  The rest of the paper is organized as 

follows: Section 2 describes our instance matching approach. 

Section 3 outlines the experiment and evaluation. Final remarks 

and further scopes of improvement are discussed in section 4.  

2．Instance Matching Algorithm 

In this research, we augment our state of the art instance 

matcher [2] by computing similarity of two candidate instances 

based on weight factors of the properties and the property values 

related to instances. We also introduce a novel technique for 

addressing scalability issues. 

2.1 Property and its Value Weighting 

Automatically assigning more relevance to those properties 

that are considered as more significant for individual 

identification during the matching process is one of the key 

challenging issues in instance matching. Our basic hypothesis of 

weight factor measurement is that a property, for which instances 

contain more unique or distinct values, could have higher 

identification capability; “the more the uniqueness, the more the 

weight factor”. We define the weight factor of each property of 

an ontology concept C, used in a knowledgebase as follows: 

                                  |    |       | |        (1) 

Where Wp is the property weight,  |    |  is the number of 

instances where each contains unique value for property  and | | 

represents the number of instances of the concept C. 

Again, measuring the contribution of a property value in univocal 

instance identification is also more essential. Property value 

weight factor rewards the value that has no repetition and 

penalizes those values that have more repetition. The weight 

factor of a property value is defined by following equation. 

                                  
  

                                                    |     |                    (2) 

Where      is the weight factor of the value    of property p.  

|     | is the number of instances containing the value    for 

property  . Now, we consider both property level and value level 

weight factors in the affinity measurement of the SLCs [2] of two 

instances (in Eq.3). Semantic Link Cloud (SLC) defines an 

instance by all linked concepts, properties and their instantiations 

which are related to specify the instance sufficiently. 

               
∑ (        (             ))                 

∑                   ∑                

   (3) 

E(p,q) returns 1 if string similarity of p  and  q is greater than a 

predefined threshold  otherwise 0.  
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Fig 1. Instance Matching Algorithm. 

Fig.1 describes a sample flow of the matching algorithm. Func-

tion generateSLC(ins, ab) collects an SLC against an instance 

from ABox ab.ABox contains all instances and their information 

of ontology. 

2.2 Scalability in Instance Matching 

  Scalability is increasingly becoming an indispensable feature in 

instance matching. The motto of scalability is to accurately select 

a subset of instances that are more likely to be similar to an input 

instance, avoiding comparing the input instance against all the 

instances within the ontology. By using owl disjoint classes 

relation in an ontology, we produce a set of concept level clusters 

where each cluster includes related concepts by eliminating 

disjoin concepts and their descendants in ontology hierarchy. We 

use our anchor flood algorithm to get concept level cluster 

alignment. Then we apply our scalable instance matcher [2] only 

the concepts of corresponding cluster across ontologies.  For 

each property of a concept, a category factor is defined by 

following equation. 

                         |    |    |   |     ⁄          (4) 

where  |    | and  |   | are the number of instances 

containing unique value and value for property   respectively. 

candidatePropertySet Sp of a concept is defined by including 

those properties whose have lower value than a defined threshold 

value. For two concepts across ontologies, we assign a 

categoryPropertySet S by taking the intersection of their 

candidatePropertySets.  

 

 

Fig 2. Scalable Instance Matching (SIM) Algorithm. 

Fig.2 shows the sample flow of SIM algorithm. For each aligned 

concept level clusters [at line 1], our SIM only efforts to compare 

instances of one concept of a cCluster against all instances of the 

concept of corresponding cCluster if their categoryPropertySetS 

has no member and both concepts have at least one common 

property [at lines 3 &4]. P1 and P2 indicate the property set of 

concepts c1 and c2 respectively.Concepts, those S has no element 

and have no common property will not compare the instances of 

each other [at line 5]. If the concepts‟ S have elements than the 

instances of both concepts will be categorized according to the 

values of  S. For achieving more accuracy, we put the instances 

that contain null value for the S in another cluster. Now, only 

instances of same category [at line 10] will be compared by 

calling our previous instancMatch function.  

3．Experiment and Evaluation 

ISLab Instance Matching benchmark dataset are used for 

evaluation.  It is a collection of OWL ontologies consisting of 29 

concepts, 20 object properties, 12 data properties. IIMB 2010 is 

created by extracting data from Freebase, an open 

knowledgebase that contains about 11 million real world object 

containing information of movies, books, celebrations, company 

etc. Fig. 3 exhibits the performance of our KDE-SKEIM system 

over other methods attended in OM-2010 [3] workshop namely, 

ASMOV, CODI and RiMOM [3] in terms of recall-precision.  

 
Fig 3. Recall-Precision Graph of Systems. 

4．Conclusion 

 Automatic Property and Its value weighting provide better 

outcomes. Our scalable approach also boasts in terms of time 

complexity. We would like to evaluate our system with large 

repositories like DBpedia and DBLP. Our future plan also 

includes fitting the system with LOD (Linked Open Data) project.  
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Algorithm: 

scalableInstancMatch (ABox ab1, ABox ab2, Alignment A) 

1. for each a(b1,b2)   A| b1 cClusters(ont.1)  b2  cClusters(ont. 2) 

2 . for each (c1,c2) |c1  concept(ont.1  b1)   c2  concept(ont.2  b2) 

3.     if (catagoryPropertySet S ==null  &&  |P1∩P2| !=0) 

4.        IM=IM  instanceMatch (C1,C2, A) 

5.     elseif (catagoryPropertySet S ==null && |P1∩P2|==0) continue 

6.     else 

7.        iCluster s1= classifyInstances (c1, ab1,categoryPropertySet S) 

8.        iCluster s2= classifyInstances (c2, ab2 ,categoryPropertySet S) 

9.          for each category cid 

10.            if cid  (iClusterm   iCluster s1   iClustern    iCluster s2) 

11.              IM=IM  instanceMatch (iClusterm , iClustern , A) 

12. returnIM 

 

Algorithm: 

instancMatch (ABox ab1, ABox ab2, Alignment A) 

1. for each insi  ab1 

2.   slci= generateSLC(insi, ab1) 

3.      for each insj   ab2 

4.        slcj=generateSLC(insj,ab2) 

5.               if IA(slci,slcj) ≥  

6.                 imatch=imatch   makeAlign (insi, insj) 

7.   return imatch 
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