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Abstract
We propose an alternative method in language model,

called context dependent class language model (CDC), to
solve data sparseness problem which is suffered by n-gram
language model. The proposing method makes usage of
the successful ideas of latent semantic analysis (LSA) in
projecting discrete words into continuous vector space. We
perform classification on the resulting space and then for-
mulate the CDC. Experimental results on the Wall Street
Journal (WSJ) corpus show that the interpolation of the
proposed method and a backoff trigram model, achieves
better performance than state-of-the-art trigram language
model as a baseline.

1 Introduction
Speech recognition task is to find the corresponding

word sequence given an acoustic input. For an acous-
tic input A, the corresponding word sequence W is the
word sequence that has the maximum posterior probabil-
ity P (W |A) given by the following equation:

Ŵ = arg max
W

(log PA(A|W ) + log PL(W )) (1)

where PA is based on an acoustic model and PL is based
on a language model. The language model purpose is to
assign probabilities to word sequences. The most common
language model used in today’s automatic speech recog-
nition system is n-gram. An n-gram language model is a
simple and powerful method based on assumption that the
current word depends on only n − 1 preceding words. In
case of trigram (n = 3), the language model gives the fol-
lowing probability to a word sequence W = w1, w2, ..., wN

PNGRAM (W ) =

N∏
i=1

P (wi|wi−2, wi−1) (2)

The parameters of the language model are usually trained
from a very large corpus. If the corpus is not large enough,
unreliable probability will be assigned to words which oc-
cur only few times. This problem is also known as data
sparseness problem.

Recently LSA, which is originally from information re-
trieval, has been used in language modeling to map dis-
crete word into continuous vector space (LSA space), then
use an estimator in the resulting space. Bellegarda [6]
combines the global constraint given by LSA with the lo-
cal constraint of n-gram language model. The same ap-
proach is used in [5] but using Neural Network (NN) as an
estimator. Gaussian mixture model (GMM) also could be
trained on this LSA space [4]. Instead of word-document
matrix, word-phrase co-occurrence matrix is used in [1]
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as a representation of a corpus. Their model shows bet-
ter performance than the clustering method based on the
maximization of the amount of mutual information. How-
ever, their model is limited to only the class of the previous
word. Our work is similar to their model with some ex-
tensions.

This paper describes a context dependent class language
model using LSA. The word in the vocabulary is projected
to LSA space according to their word’s role or position
on the sentences. Vector quantization (VQ) is applied to
classify a vector space. Then a simple formulation is in-
troduced to calculate its occurring probability.

This paper is divided into four sections. The next sec-
tion describes the context dependent class language model
including a review about LSA and how to build the ma-
trix representation to get the projection matrices. Section
3 reports the experiments of the proposed model. The last
section is the conclusions.

2 Context Dependent Class Language Model
Let V be a size of a vocabulary, each word in the vocab-

ulary can be mapped into an l-dimensional vector space
according to the following equation:

ui = Xci(1 ≤ i ≤ V ), (3)

where X is a projection matrix with V × l dimension, and
ci is a discrete vector of word wi, where the i-th element
of the vector is set to 1 and all other V − 1 elements are
set to 0. Since ui is a vector which representing word wi,
any familiar clustering method could be applied, and the
word probability could be approximated according to a
class based language model

PCLASS(wi|wi−n+1, ..., wi−1)
= P (Ci|Ci−n+1, ..., Ci−1)P (wi|Ci)

(4)

In LSA, we have a different projection matrix for a dif-
ferent word position. For instance, LSA (see Section 2.1)
with bigram matrix gives U matrix that project the cur-
rent word wi into l-dimension space, and matrix V is a
projection matrix for the 1st preceding word wi−1. Thus,
we need another formulation that could handle such situ-
ation. Hence, we define the context dependent class lan-
guage model as

PCDC(wi|wi−n+1, ..., wi−1)
= P (C(wi,Xi)|C(wi−n+1,Xi−n+1), ..., C(wi−1,Xi−1))
×P (wi|C(wi,Xi)

(5)
where C(wi,Xi) is a class of word wi based on projection
matrix Xi. For an unseen n-gram class, we applied class
backoff to a lower context class.

The CDC tried to utilize the semantic structure of the
language. In the literature, language models that model
different aspects have been successfully combined with an
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Figure 1: Bigram Matrix

Figure 2: Trigram Matrix

n-gram language model. Here, the statistical n-gram lan-
guage model used to capture the local constraint using
linear interpolation

PL ≈ αPCDC + (1− α)PNGRAM (6)

where α is a weight constant.

2.1 Latent Semantic Analysis
LSA extracts semantic relations from a corpus, and

shows them on the l-dimension vector space. The discrete
words are projected into LSA space by applying singular
value decomposition (SVD) to a matrix that representing
a corpus. Let A be a representational matrix with M ×N
dimension, SVD decomposed matrix A into three other
matrices U, S, and V

AM×N = UM×kSk×kV
T
k×N (7)

Because the solution’s dimensionality is too large for
computing resources and the original matrix A is pre-
sumed to be noisy, the LSA matrices (U and V matrix)
dimension is smaller than the original

ÂM×N = UM×lSl×lV
T
l×N (8)

where l � k and Â is the best least square fit approxima-
tion to A.

2.2 Matrix Representational
Bigram matrix is a matrix representation of a corpus

where each row represents a current word wi, and each
column represents a 1st preceding word wi−1 as illustrated
by Figure 1.

Each cell aij is a co-occurrence frequency of word se-
quence wjwi in the corpus. The resulting SVD matrix U
is used to project current word into LSA continuous space.
While matrix V is used to project 1st preceding word. In
this case, the CDC in Equation (5) becomes

PCDC(wi|wi−1) = P (C(wi,U)|C(wi−1,V))P (wi|C(wi,U))
(9)

Figure 3: 1-r distance Bigram Matrix

Table 1: Experimental data statistics.
#Word OOV rate

Training set 17,283,668 0.0227
Closed test set 22,746 0.0183
Open test set 23,567 0.0283

2.2.1 Trigram Matrix

Figure 2 illustrates the trigram matrix. Unlike the trigram
matrix defined in [1], in this paper the two previous words
will not be seen as a phrase, but will be put as indepen-
dent words in the column. By doing this, we made the
matrix dimension even smaller. Thus, the trigram matrix
is defined as a matrix where each row represents a current
word wi, each column in the first n columns represents
2nd preceding word wi−2, and each column in the second
n columns represents 1st preceding word wi−1.

Each cell aij , for the first n columns (1 ≤ j ≤ n), is a
co-occurrence frequency when the word wj occurs as the
2nd preceding word of word wi. For the second n columns,
each cell aij (n+1 ≤ j ≤ 2n) is a co-occurrence frequency
of word sequence wjwi. The resulting SVD matrix V con-
sists of two different parts. The first n rows is used to
project the 2nd preceding word, and the next n rows is
used to project the 1st preceding word. Matrix U is used
to project a current word. In this case, the CDC is calcu-
lated as follows:

PCDC(wi|wi−2, wi−1)
= P (C(wi,U)|C(wi−2,V1), C(wi−1,V2))P (wi|C(wi,U))

(10)
where V1 is the first n rows of matrix V and the rest is
V2.

2.2.2 1-r distance Bigram Matrix

Different with bigram or trigram matrix, in this matrix we
tried to collect the information about the previous word
in general by accumulating the co-occurrence of r-distance
bigram words. So the column in 1-r distance bigram ma-
trix represents the preceding words wi−r, ..., wi−1 in gen-
eral as illustrated by Figure 3.

Each cell aij is the accumulation of co-occurrence word
wi as a current word with wj appearing from the 1st pre-
ceding word to the wj as rth preceding word. The result-
ing SVD matrix U is used to projecting the current word
into LSA space. While matrix V is used to projecting the
preceding words. In this case, Equation (5) becomes

PCDC(wi|wi−n+1, ..., wi−1)
= P (C(wi,U)|C(wi−n+1,V), ..., C(wi−1,V))
×P (wi|C(wi,U))

(11)

Because the matrix V contains information about all the
preceding words, not only 1st or 2nd preceding word in
bigram or trigram matrix case, the CDC context could
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Table 2: Accuracy and average rank (200 dimensions and 2000 classes).
No Model Closed Test Open Test

Accuracy Avrg Accuracy Avrg
1-best 5-best 10-best 50-best 100-best Rank 1-best 5-best 10-best 50-best 100-best Rank

1 Baseline 0.2924 0.5585 0.6602 0.8390 0.8890 96 0.1839 0.3806 0.4681 0.6488 0.7125 672
2 CDC-B 0.1973 0.3702 0.4547 0.6260 0.6903 497 0.1790 0.3381 0.4261 0.5946 0.6569 848
3 CDC-T 0.2349 0.4433 0.5435 0.7338 0.7989 222 0.1742 0.3383 0.4257 0.6022 0.6661 926
4 CDC-DB2 0.2372 0.4423 0.5425 0.7321 0.7963 219 0.1722 0.3319 0.4224 0.5949 0.6589 1195
5 CDC-DB3 0.2301 0.4565 0.5552 0.7443 0.8061 212 0.1684 0.3434 0.4307 0.6010 0.6620 1177
6 CDC-DB4 0.2416 0.4620 0.5626 0.7467 0.8083 217 0.1776 0.3521 0.4377 0.6041 0.6636 1212
7 CDC-B+ 0.3047 0.5543 0.6523 0.8228 0.8773 108 0.2243 0.4139 0.4958 0.6630 0.7211 645
8 CDC-T+ 0.2917 0.5461 0.6423 0.8191 0.8742 110 0.1961 0.3848 0.4670 0.6437 0.7035 673
9 CDC-DB2+ 0.2928 0.5470 0.6450 0.8188 0.8732 110 0.1940 0.3812 0.4655 0.6399 0.7006 697

10 CDC-DB3+ 0.2922 0.5489 0.6508 0.8217 0.8751 109 0.1942 0.3823 0.4706 0.6408 0.7029 697
11 CDC-DB4+ 0.2941 0.5536 0.6506 0.8229 0.8756 110 0.1957 0.3867 0.4710 0.6426 0.7038 704

be extended into n-gram context without increasing cost
to calculate matrix. Unless stated, the class context will
always have n = 3. In the experiment we will also conduct
the 4-gram of CDC using this matrix.

3 Experiments
The training data set was taken from WSJ corpus year

1987 consists of 17 million words. The evaluation was con-
ducted using two data sets, the closed test set and the open
one. The closed test set data was taken from training data,
consists of 22 thousand words. For open test, the data set
was taken from WSJ year 1988 consists of 23 thousand
words. Words which occur less than 24 times are mapped
into an out of vocabulary (OOV) symbol. This makes the
vocabulary size 20,291 in total. The detail about experi-
mental data is given by Table 1.

The baseline, Katz backoff trigram language model, was
build using HTK Language Model toolkit[7]. The ma-
trix representation was decomposed and reduced using
SVDLIBC 1 with Lanczos method. The LSA dimension
was varied from 20, 50, 100, and 200 dimensions. The clus-
tering was conducted by VQm2 using K-means algorithm
with Euclidean distance with various numbers of classes
from 100, 200, 1000, and 2000. The models are evaluated
by calculating its accuracy, average rank, and perplexity
according to the following equation:

Accuracy =
#correctly predicted word

#of sample
(12)

Averagerank =

∑
W

correct word position in n− best list

#of sample
(13)

Perplexity = 2−
1
N

log2 PL(W ) (14)

The perplexity is calculated only on the open test set.
For the first experiment, we consider 10 CDC model,

they are CDC with bigram matrix (CDC-B), CDC using
trigram matrix (CDC-T), CDC with 1-2 distance bigram
matrix (CDC-DB2), CDC with 1-3 distance bigram ma-
trix (CDC-DB3), CDC with 1-4 distance bigram matrix
(CDC-DB4), and model with ”+” sign means that the
model is interpolated with the baseline using Equation 6
with α = 0.5. In the observed LSA dimension and class
number, generally the model’s performance shows better
results when both values are increasing. So in this paper,
we will show only some results which are representative to
the model performance.

The accuracy and average rank result is given by Table
2. The baseline has better accuracy compared to other
models except CDC-B+ and CDC-DB4+ on 1-best with
accuracy 30.47% and 29.41% respectively. The accuracy

1http://tedlab.mit.edu/∼dr/SVDLIBC
2http://www.dice.ucl.ac.be/ lee/software/vq/main.html

Table 3: Perplexity against number of classes
(200 dimensions).

No Model Number of Classes
100 200 1000 2000

1 Baseline 172 172 172 172
2 CDC-B 431 410 389 374
3 CDC-T 446 381 356 350
4 CDC-DB2 652 668 1110 815
5 CDC-DB3 679 694 1062 809
6 CDC-DB4 675 782 1144 778
7 CDC-B+ 148 147 143 142
8 CDC-T+ 164 157 153 150
9 CDC-DB2+ 196 185 160 155

10 CDC-DB3+ 197 186 161 154
11 CDC-DB4+ 197 189 160 153

Table 4: Perplexity against dimension (2000 classes).
No Model Dimension

20 50 100 200
1 Baseline 172 172 172 172
2 CDC-B 431 410 389 374
3 CDC-T 446 381 356 350
4 CDC-DB2 1066 878 969 815
5 CDC-DB3 1086 855 831 809
6 CDC-DB4 1031 913 847 778
7 CDC-B+ 148 147 143 142
8 CDC-T+ 164 157 153 150
9 CDC-DB2+ 170 161 158 155

10 CDC-DB3+ 169 160 157 154
11 CDC-DB4+ 173 162 158 153

on the open test shows that CDC-B+ accuracy is bet-
ter than the baseline. Other combination (CDC+) model
shows comparable results to the baseline. Evaluation on
average rank also shows similar behaviour. The baseline
is better in closed test, but CDC-B+ leading in the open
test.

The perplexity of each model with the increasing class
number is shown in Table 3. CDC-B+ and CDC-T+ give
lower perplexity than the baseline. While other CDC+
model should at least have 1000 classes to achieve better
perplexity. In Table 4 we can see that the interpolation
model shows better perplexity than the baseline except for
CDC-DB4+ with 20 dimension and 2000 classes. The best
perplexity is achieved by CDC-B+ with perplexity 142. It
means 17.44% relative improvement against the baseline
trigram.

As shown from these results, the CDC performance is
below the baseline. But when combined with the baseline
the result shows that the CDC+ performance is improved
and comparable with the baseline. CDC-B+ shows better
performance compared to the other CDC models. It also
shows smaller difference between the closed test and open
test performance than the baseline.

Next, we conducted an experiment similar to CDC-
B/CDC-B+. But here only one LSA matrix is used, which
is only U, to project all words (either current word or pre-
ceding word) to LSA space. And after clustering, the prob-
ability is calculated using a class based language model as
shown in Equation 4 (context-independent class). This
model denoted as MU-B and MU-B+, where MU-B+ is
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Figure 4: Accuracy of closed test

Figure 5: Accuracy of open test

an interpolation model of MU-B. The purpose of this ex-
periment is to show that the information about the 1st

preceding word is contained in V matrix. Here we only
shows the result of 200 dimensions and 2000 number of
class. The comparison on accuracy of this experiment is
given by Figures 4 and 5. The average rank of MU-B and
MU-B+ on the closed test set is 505 and 108, and on the
open test set is 881 and 658 respectively. The perplexity
is 408 for MU-B and 146 for MU-B+. From these results,
it is clear that CDC-B and CDC-B+ gives better perfor-
mance.

In the last experiment, we conducted the 4-gram of
CDC using 1-r distance bigram matrix (CDC-4DBr). The
accuracy of this model is given by Table 5 for the closed
test, and Table 6 for the open test. Followed by Table 7
that shows the average rank and the perplexity. By in-
creasing the context class into 4-gram, the performance
of CDC is greatly improved, especially on the closed test.
The performance of CDC-4DBr is far better than the base-
line on the closed test accuracy and gets even better when
interpolated with the baseline. But the performance on
the open test is not as good as the closed test. The per-
plexity of this model shows the lowest perplexity of CDC,
that is 132. It means 23.26% relative improvement against
the baseline.

4 Conclusions
We proposed an alternative way to calculate the lan-

guage model. It has been shown that the performance
differences between the closed test and open test of CDC
with bigram matrix is closer than the baseline’s. This re-

Table 5: Accuracy of closed test (200 dimensions
and 2000 classes).

No Model Accuracy
1-best 5-best 10-best 50-best 100-best

1 Baseline 0.2924 0.5585 0.6602 0.8390 0.8890
2 CDC-B+ 0.3047 0.5543 0.6523 0.8228 0.8773
3 CDC-4DB2 0.3809 0.6458 0.7353 0.8867 0.9235
4 CDC-4DB3 0.3794 0.6567 0.7469 0.8911 0.9276
5 CDC-4DB4 0.3904 0.6613 0.7553 0.8921 0.9287
6 CDC-4DB2+ 0.4092 0.6851 0.7768 0.9086 0.9407
7 CDC-4DB3+ 0.4113 0.6933 0.7837 0.9091 0.9421
8 CDC-4DB4+ 0.4140 0.6963 0.7852 0.9113 0.9435

Table 6: Accuracy of open test (200 dimensions
and 2000 classes).

No Model Accuracy
1-best 5-best 10-best 50-best 100-best

1 Baseline 0.1839 0.3806 0.4681 0.6488 0.7125
2 CDC-B+ 0.2243 0.4139 0.4958 0.6630 0.7211
3 CDC-4DB2 0.1772 0.3465 0.4290 0.5999 0.6594
4 CDC-4DB3 0.1742 0.3506 0.4371 0.6056 0.6622
5 CDC-4DB4 0.1836 0.3610 0.4441 0.6055 0.6639
6 CDC-4DB2+ 0.1989 0.3901 0.4715 0.6407 0.7004
7 CDC-4DB3+ 0.1986 0.3911 0.4756 0.6428 0.7020
8 CDC-4DB4+ 0.2014 0.3956 0.4775 0.6444 0.7041

Table 7: Average Rank and perplexity (200 dimensions
and 2000 classes).

No Model Test set Perplexity
Closed Open

1 Baseline 96 672 172
2 CDC-B+Baseline 108 645 142
3 CDC-DB2 70 1283 804
4 CDC-DB3 64 1264 802
5 CDC-DB4 68 1321 801
6 CDC-DB2+Baseline 44 707 134
7 CDC-DB3+Baseline 42 707 134
8 CDC-DB4+Baseline 42 717 132

sult validates our goal on solving the sparseness problem.
Furthermore our proposed model achieved 23.26% relative
improvement on perplexity, compared to state-of-the-art
statistical trigram language model.

For future works, there are still many things that can
be improved, such as using another distance in VQ or
changing clustering method. We also looking forward to
use another extraction method such as Probabilistic LSA
(PLSA).
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