
†Department of Electrical and Electronic Engineering and
Computer Science, Graduate School of Science and Engineering,
Ehime University

Automatic determination of compatibility of method invocations
 in object-oriented database systems

Khamisi KALEGELE † Kouji HIRATA † Yoshinobu HIGAMI † Shin-ya KOBAYASHI †

1. Introduction
Transaction is a mechanism by which users communicate with

shared resources. From user viewpoint, it is defined as a
request/reply unit expressed in the form of a source program and
from system viewpoint it is defined as a sequence of operations
(reads, writes etc) on computable objects. Operations on shared
resources (database) must always be executed in the framework of
a transaction. A correct transaction is characterized by ACID
properties (Atomicity, Consistency, Isolation, and Durability).
These are crucial for the general consistency of the database.
Isolation property is specifically responsible for making
concurrent executions possible whereby each transaction is
isolated from the other during execution [2]. Isolation is enforced
by Concurrency Control (CC) Mechanisms, commonly presented
in three categories; Lock-based, Time stamping and Optimistic.
Their description is not part of this paper.

At some stage these protocols seek to explore the semantics of
transaction operations in order to increase concurrency either by
increasing effective usage of locks or by avoiding concurrent
execution of conflicting operations etc.

1.1. Motivation and purpose

Although relational databases are by far the most commonly
used databases today, Object-Oriented Database Systems (OODB
Systems) theoretically still hold a better promise of providing
greater opportunities for supporting semantic-based concurrency
control [1]. This is because of a number of reasons, first is the
fact that the capability of including user-defined operations of
arbitrary complexity in data object representation provides
greater semantic information about the operations that can be
exploited for CC. Second, because of the encapsulation
mechanism of Object-Oriented (OO) models, operations defined
on a data object provide the only means to access the object’s
data. Thus, data contention can occur only among operation
invocations within the object. This characteristic of OO data
models provides greater flexibility for CC in that it allows
concurrency control specific to individual data objects.

According to [3], the required explicit specification of the
Method Compatibility Table (MCT) needed for the exploitation
of operation semantics can be achieved by commutativity. For
instance, in a Queue object, enqueing the same item by two
concurrent transactions is not a conflict because the order of
these updates is insignificant in the sense that neither it can be
observed by the two executions of the enqueue method nor by
any method on queues that may be invoked later. The two
enqueue operations are said to be commutative with respect to
each other. This kind of commutativity is very general because
only semantics of the operations are considered. Sometimes this
general commutativity is relaxed by also considering the state of
an object to enhance concurrency. This is referred to as state-
based commutativity [9].

In practice object classes in an OODB are much bigger and
complex than a simple Queue. Thus, it is very tedious for the

object creator to look into the semantics of the class and
determine whether two methods commute or not in order to
increase concurrency.

In this paper we present our efforts in devising a way of
establishing practical compatibility in terms of achieving better
concurrency. We propose the use of affected set of attributes
called AMS (Access Mode Set) to automate the process of
determining commutativity.

1.2. Basic Assumptions

Although CC algorithms need better be designed with the
general commutativity in mind, according to [6], state-based
commutativity potentially offers more CC but incurs more
overhead since the scheduler needs to know intermediate state
preceding the two operations whose commutativity is under
question. In this research, we assume state-based commutativity
for greater method-invocation compatibility because we think
that the overhead is reduced by the fact that in OODB we can
have CC specific to individual objects.

Ideally, encapsulated objects are accessed only through
explicitly defined interfaces. However, we believe bypassing
these interfaces in some cases, like when making object-oriented
code concurrent, is inevitable. We assume that enforcement of
encapsulation is somehow relaxed in OODB as well. The same
supposition is demanded by [5] where programming view of
encapsulation have been differentiated from the database
adaptation of that view. It was found in that work that there are
some cases where encapsulation is either not needed or its
enforcement need to be reduced.

2. Example OODB Object Class

We set forth explaining how to determine compatibility,
using our approach, with flight Class shown in Fig. 1. The class
provides 2 methods for booking economy class (EC) and
business class (BC) seats, 2 methods for booking either class seat
and if that class seats are sold-out then book the other class seat,
and 2 classes for cancelling each class seat booking.

3. Compatibility of Method invocation

Transactions in OODB are modeled as sets of method
invocations on objects. Concurrency level is subjected to the
level at which object methods are concurrently invoked. This
comes down to the effects each method has on the state of an
object as presented by its attributes. In our approach, we employ
dynamic monitoring of a set of these object state-attributes in
terms of modes at which they are accessed. We call this set AMS
(Access Mode Set) and is defined in section 3.1. Generally there
are two types of attributes; primitive and Object (user defined)
attributes. For primitive attributes, we use ‘R ’, ‘W’ and ‘N’ for
‘READ’, ‘WRITE’ and ‘NULL’ respectively as access modes.
Since object-types attributes are user defined, their access modes
are object-dependent. In our flight class, passenger is an object-
type attribute and we assume it has ‘A’ for ADD, ’D’ for
DELETE, ’R’ for READ and ‘N’ for NULL as access modes.

In case of multiple access modes, the most restrictive access
mode takes precedence. From the basics of correctness of
concurrent executions, write operation is more restrictive than a
read operation for primitive attributes. Therefore precedence
order is ‘W’ > ’R’ > ’N’. Our method requires that an object

227

D-040

FIT2009（第8回情報科学技術フォーラム）

（第2分冊）

class flight{
private: int e, b; /*no. of EC seats and BC seats.*/
 list<person> passenger; /*passenger list.*/
public: boolean E(person psg); /*book EC only.*/
 boolean EB(person psg); /*if EC is sold-out book BC.*/
 boolean B(person psg); /*book BC only.*/
 boolean BE(person psg); /*if BC is sold-out book EC.*/
 boolean cancelE(person psg); /*cancel EC booking.*/
 boolean cancelB(person psg); /*cancel BC booking.*/
}
//implementation
boolean E(person psg){
 if (e< 40) then{
 e=e+1; passenger.insert(psg,’E’);
 return TRUE;
 }
 else return FALSE;
}
boolean EB(person psg){
 if (E(psg)) then return TRUE
 else{
 if(B(psg)) then return TRUE
 else return FALSE;
 }
}
boolean B(person psg) {
 if (b< 10) then{
 b=b+1 ; passenger.insert(psg,’B’);
 return TRUE;
 }
 else return FALSE;
}
boolean BE(person psg){
 if (B(psg)) then return TRUE
 else{
 if(E(psg)) then return TRUE
 else return FALSE;
 }
}
void cancelE(person psg){e=e-1;passenger.delete(psg) }

void cancelB(person psg){b=b-1; passenger.delete(psg)}

NB: The flags ‘E’ and ‘B’ serve to indicate booked class.
And numbers 40 and 10 stands for maximum numbers of
EC and BC seats.

Fig. 1: Flight class

creator defines precedence for the access modes for object-type
attributes. An additional access mode ‘E’, for EXCLUSIVE, is
provided for cases where it is impossible or ambiguous to define
restrictiveness. For instance, it is a little vague about
restrictiveness of access modes ‘A’ and ‘D’ in a passenger object.
So in case of multiple access modes (‘A’ and ‘D’) on passenger
object we employ ‘E’ mode.

Compatibility is determined in two steps. We explain in
section 3.1 how to establish AMS as a first step of our approach.
Here we present a simple algorithm used to get AMS. In section
3.2, we explain method invocation conflicts using AMSs as a
second step of our approach.

3.1. Determination of AMS

Fig. 2 shows an algorithm for determining AMS.
We use a simplified CFG (Control Flow Graph) to determine

possible execution flows. For flight class in Fig. 1, CFG is shown
in Fig. 3. A root node is the flight class with methods as its
children. Down after this level, every control structure constitutes

a node. Children to any control structure will correspond to every
possible evaluation of that control structure.

Now, using the algorithm in Fig. 2, AMS of any method can
be established as follows;

For method M=EB (psg);
1. We declare AMS(M) as a set a1a2a3 where a1, a2 and a3 are

access modes of e, b, and passenger respectively.
2. M=EB(psg) has 3 possible execution flows (c),(d) & (e)

from Fig. 3. We proceed as follows;
 (c) (d) (e)
AMS(Mp) NNN NNN NNN

AMS(Mn) WNA RNN RNN
NWA NRN

AMS(Mo) NNN NNN NNN
AMS(Mf) WNA RWA RRN

Note that there are two AMS(Mn)s for each execution flows (d)
and (e) because there are two nested invoked methods for each
flow.

3. This is shown in the last row of the table in step 2.
4. Lastly we combine AMS(Mf) of the three possible

execution flows.
AMS(Mf) of Execution flow (c)
AMS(Mf) of Execution flow (d)
AMS(Mf) of Execution flow (e)

WNA
RWA
RRN

Effective AMS(M=EB(person)) WWA

Shown below in Table 1 are AMSs for all methods of a flight
class.

Table 1: AMSs for flight class
Method E() EB() B() BE() cancelE() cancelB()

AMS WNA WWA NWA WWA WND NWD

3.2. Invocation Compatibility

As mentioned in section 1.2, we use the criteria of state-
based commutativity to establish compatibility. To test the effects
of invocations, AMSs are compared item-wise for conflicting
access modes. Below is how we define compatibility of access
modes for flight class. We assume the definition of access modes
conflicts is part of database metadata. For our flight class, we set
up the following definition.

The ordered pair α1α2 of access modes of an attribute by two
different invocations is conflicting only for the following set of
ordered pairs; {WR, WW, AR, DR, Eα’} where α’ is any access
mode.

Algorithm for Determining AMS(M) of method M
1. Declare AMS as a set a of ordered Access Modes ai for i=1~N

written as a1a2…aN where N=Number of State-Attributes
2. For each possible execution flow of Method M, establish

2.1. AMS(Mp) for primitive state-attributes only.
2.2. AMS(Mn) for nested invoked methods only.
2.3. AMS(Mo) for object-type attributes only.

3. Combine AMS(Mp), AMS(Mn) and AMS(Mo) by considering the
most restrictive access mode to get AMS(Mf) for each
possible execution flow.

4. Combine AMS(Mf) by considering the most restrictive access
mode to get AMS(M)

Fig. 2: Algorithm for determining AMS

228

FIT2009（第8回情報科学技術フォーラム）

（第2分冊）

Using N for Non-conflicting and Y for conflicting modes,

the following can be depicted from the above definition;
WR→Y , WW→Y , WE→ N , AD→ N etc.

Now, AMSs are compatible only if the results of all item
wise comparisons are not conflicting. Without considering
dynamic AMSs, from Table 1 the complete MCT for the flight
class will be as shown in Table 2. Note here that, among other
observations, ongoing execution of EB() is not compatible with
any other method. However it is possible to achieve some
compatibility by using dynamic AMSs derived from Fig. 3.

Commonly, semantics have been exploited to increase
concurrency. Likewise, in our approach of determining
compatibility, we explore control structures to get more
compatibility. Depending on evaluation of control structures, the
access modes of some state-attributes might change. We take this
into consideration and dynamically update AMS of an ongoing
execution.

Dynamically, at any intermediate node in Fig. 3, AMS is
established as a combination of all other AMSs down all the
children of that node. For example before “if(B(psg))” in method
EB(psg). Effective AMS is as shown below;

AMS at leaf (d)
AMS at leaf (e)

RWA
RRN

Effective AMS(EB(person)) RWA

At any point in time, the execution of EB() can be in one of

five stages corresponding to 5 edges in the CFG(Fig. 4).We show
below, in Table 3, AMSs of these five states and respective
compatibilities.

4. Evaluation
Table 3 shows possibilities for compatibility for a method

{EB()} which without dynamic compatibility was not compatible
with any other method. Needless to say, there are some potential
in this approach as far as concurrency is concerned.

If we define)/(0EBMP as probability of compatibility of
method M when method EB() is ongoing, then;

.
Methods of No. Total

ongoing is EB when Methods Compatible No.of)/(0 =EBMP

From Table 2, we get .0)/(0 =EBMP

 After considering dynamic compatibility)/(0EBMP becomes;

,
Methods of No. Total

 stageat EB when Methods Compatible of No.Stages
of No.

ip
i

i∑=

where ip is probability that EB is at stage i.
Therefore with dynamic compatibility, from Table 3, we get

.
6

62220)/(54320 ppppEBMP ++++
=

Practically, ip is time- dependent value and very difficult

to establish. For simplicity if)(tppi = , progress probability of
method EB() at execution time t, then

).(2)/(0 tpEBMP =

Evidently, although)(tp is a complex function, it is a non
negative function. Thus,)/(0EBMP is always likely to be

WNA

flight

E(psg) EB(psg)

if(e<40)

true

RNN

false falsetrue true

if(b<10)

RNN
NWA
NNN

WNA
NNN

NRNWND

B(psg)BE(psg)

cancelE(psg)
cancelB(psg)

if(E(psg))

false

if(B(psg))

true false

NWA

if(B(psg))

NWA
NNN

NRN
WNA
NNN

NWD

if(E(psg))

true false

true false

RNN
NRN
NNN

NRN
RNN
NNN

(a) (b) (k) (l)(c) (d) (e) (f) (g) (h) (i) (j)

WNA
RWA RRN

NWA
WRA RRN

passenger
passenger

passenger passenger

Fig. 3. Simplified CFG showing AMSs

 Table 2: Method Compatibility Table (MCT) for the flight class

E()
(WNA)

EB()
(WWA)

B()
(NWA)

BE()
(WWA)

cancelE()
(WND)

cancelB()
(NWD)

E() - (WNA) YNN=X YNN=X NNN=O YNN=X YNN=X NNN=O

EB() - (WWA) YNN=X YYN=X NYN=X YYN=X YNN=X NYN=X

B() - (NWA) NNN=O NYN=X NYN=X NYN=X NNN=O NYN=X

BE()- (WWA) YNN=X YYN=X NYN=X YYN=X YNN=X NYN=X

cancelE() - (WND) YNN=X YNN=X NNN=O YNN=X YNN=X NNN=O

cancelB() - (NWD) NNN=O NYN=X NYN=X NYN=X NNN=O NYN=X

Ongoing Execution

Requested
Invocation

Table 3: MCT for ongoing execution of EB()

1
(WWA)

2
(WNA)

3
(RWA)

4
(RWA)

5
(RRN)

E() - (WNA) YYN=X YNN=X NNN=O NNN=O NNN=O

EB() - (WWA) YYN=X YNN=X NYN=X NYN=X NNN=O

B() - (NWA) NYN=X NNN=O NYN=X NYN=X NNN=O

BE()- (WWA) YYN=X YNN=X NYN=X NYN=X NNN=O

cancelE() - (WND) YYN=X YNN=X NNN=O NNN=O NNN=O

cancelB() - (NWD) NYN=X NNN=O NYN=X NYN=X NNN=O

Ongoing Execution of EB()

Requested
Invocation

229

FIT2009（第8回情報科学技術フォーラム）

（第2分冊）

higher when considering dynamic compatibility. Note that the
purpose of this representation is just to emphasize a point made
earlier that there are some potential in this approach. This is not a
generic evaluation.

Before evaluating further performance benefits which can
be achieved from this approach, there are some issues which
need be looked upon. As pointed out in section 1.2, in some
cases, bypassing encapsulation interfaces is inevitable in order to
take advantage of OO. Since there is a clear tradeoff between
concurrency and breach of OO concept, it is important that the
extent by which encapsulation can be relaxed without
compromising the meaning of OO be known.

Also due to the fact that in this approach, invocation
compatibility relies on the definition of conflicting access modes
which subsequently is based on the update type, evaluation of
this approach must be specific to a CC mechanism. The
commonest update types employed in CC mechanisms are In-
place and deferred Updates.

Moreover, the increased possibilities for compatibility in
Table 3 are all falling within a quite small window of ongoing
execution of method EB(). With increasing processor speeds, it is
fair to say that this window might not be long enough for the
effective exploitation of these possibilities. Of course, unless this
approach is used in long-transaction systems, it does not hold
much promise in increasing concurrency.

5. Conclusion and Future work

The approach aims at using concepts of commutativity
which are increasingly successful in compiler optimization [7, 8].
We presented an automatic way to establish whether two method
invocations on an OODB object are compatible and thus a means
to increase transaction processing concurrency can be sought.
This means is CC mechanism-based. We have demonstrated this
approach against a flight class by showing possibilities of
compatibilities where there was none. Particularly for the
demonstrated case, the possibility is up to 100% depending on
the execution stage at which the ongoing execution is.

 This approach of automatic determination of
compatibility of method invocations is at a very preliminary stage.
It seems to place much burden on object creator for complex
objects. Among other complicated tasks is to define access mode
precedence for object-type attributes.

Obviously future work in this line is finding better way of
handling access modes of user-defined object-types attributes.
Another unaddressed issue is the issue of nested transaction.

Since OODB is modeled in terms of method invocations, nested
transactions imply nested series of method invocations. In the
mean time we feel that the best way of handling nested
invocation is CC protocol dependent. This is also supported by
[4] in which the transaction and sub transaction relationship
seems to depend more on the way the two commit and abort.
Also concerning state-base commutativity, there is an issue of
tradeoff between increased concurrency and increased overhead
on the scheduler.

References
[1] J. Lee and S. H. Son, “Semantic-Based Concurrency Control for

Object-Oriented Database Systems Supporting Real-Time
Applications,” 6th IEEE Euromicro Workshop on Real-Time
Systems, Vaesteraas, Sweden, July 1994, pp. 156-161.

[2] R. Elmasri and S. B. Navathe. Fundamentals of database systems,
5th ed. Harlow: Addison-Wesley, 2003.

[3] P. Muth et al., “Semantic Concurrency Control in Object-Oriented
Database Systems,” in Proc. Int'l Conf. Data Eng. (ICDE '93),
April, 1993, pp. 233-242.

[4] P. A. Bernstein and E. Newcomer. Principles of Transaction
Processing. San Francisco: Morgan Kaufmann, 1997.

[5] M. P. Atkinson, F. Bancilhon, D. Dewitt, K. Dittrich, D. Maier
and S. Zdonik, “The Object-Oriented Database System
Manifesto,” in Proc. First International Conference on Deductive
and Object-Oriented Databases, Kyoto, Japan, December, 1989,
pp. 40-57.

[6] C. Beeri, P. A. Bernstein, N. Goodman, Lai, M. Y, and D. E.
Shasha, “A Concurrency Control Theory for Nested Transactions,”
in Proc. 1983 Second Annual ACM Symposium on Principles of
Distributed Computing, Montreal, Quebec, Canada, August, 1983,
pp. 45–62.

 [7] M. Diniz, and P. Diniz, “Commutativity Analysis: A New
Analysis Technique for Parallelizing Compilers,” ACM
Transactions on Programming Languages and Systems, Vol. 19,
No. 6, November, 1997, pp 1-47.

[8] F. Aleen, and N. Clark, “Commutativity Analysis for software
parallelization: Letting Program Transformation see the Big
Picture,” in Proc. the 14th international conference on
Architectural support for programming languages and operating
systems, Washington, DC, USA, March, 2009, pp 241-252.

[9] W. Gerhard and V. Gottfried. Transactional information
systems: Theory, Algorithms, and the Practice of Concurrency
Control and recovery. Elsevier Science and Technology Books:
Morgan Kaufmann, May, 2001.

flight

E() EB()

if(e<40)

true false falsetrue true

if(b<10)

B()BE()

cancelE() cancelB()

if(E())

false

if(B())

true false

if(B())

if(E())

true false

true false

1

2 3

4 5

WNA RNN NRNWND NWANWD
(a) (b) (k) (l)(c) (d) (e) (f) (g) (h) (i) (j)

WNA RWA RRN NWA WRA RRN

Fig. 4: Five execution stages of method EB()

230

FIT2009（第8回情報科学技術フォーラム）

（第2分冊）

	Khamisi KALEGELE † Kouji HIRATA † Yoshinobu HIGAMI † Shin-ya KOBAYASHI †

