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1. Introduction 
Transaction is a mechanism by which users communicate with 

shared resources. From user viewpoint, it is defined as a 
request/reply unit expressed in the form of a source program and 
from system viewpoint it is defined as a sequence of operations 
(reads, writes etc) on computable objects. Operations on shared 
resources (database) must always be executed in the framework of 
a transaction. A correct transaction is characterized by ACID 
properties (Atomicity, Consistency, Isolation, and Durability). 
These are crucial for the general consistency of the database. 
Isolation property is specifically responsible for making 
concurrent executions possible whereby each transaction is 
isolated from the other during execution [2]. Isolation is enforced 
by Concurrency Control (CC) Mechanisms, commonly presented 
in three categories; Lock-based, Time stamping and Optimistic. 
Their description is not part of this paper.  

At some stage these protocols seek to explore the semantics of 
transaction operations in order to increase concurrency either by 
increasing effective usage of locks or by avoiding concurrent 
execution of conflicting operations etc. 

 
1.1. Motivation and purpose 

Although relational databases are by far the most commonly 
used databases today, Object-Oriented Database Systems (OODB 
Systems) theoretically still hold a better promise of providing 
greater opportunities for supporting semantic-based concurrency 
control [1]. This is because of a number of reasons, first is the 
fact that the capability of including user-defined operations of 
arbitrary complexity in data object representation provides 
greater semantic information about the operations that can be 
exploited for CC. Second, because of the encapsulation 
mechanism of Object-Oriented (OO) models, operations defined 
on a data object provide the only means to access the object’s 
data. Thus, data contention can occur only among operation 
invocations within the object. This characteristic of OO data 
models provides greater flexibility for CC in that it allows 
concurrency control specific to individual data objects. 

According to [3], the required explicit specification of the 
Method Compatibility Table (MCT) needed for the exploitation 
of operation semantics can be achieved by commutativity. For 
instance, in a Queue object, enqueing the same item by two 
concurrent transactions is not a conflict because the order of 
these updates is insignificant in the sense that neither it can be 
observed by the two executions of the enqueue method nor by 
any method on queues that may be invoked later. The two 
enqueue operations are said to be commutative with respect to 
each other. This kind of commutativity is very general because 
only semantics of the operations are considered. Sometimes this 
general commutativity is relaxed by also considering the state of 
an object to enhance concurrency. This is referred to as state-
based commutativity [9]. 

In practice object classes in an OODB are much bigger and 
complex than a simple Queue. Thus, it is very tedious for the 

object creator to look into the semantics of the class and 
determine whether two methods commute or not in order to 
increase concurrency.  

In this paper we present our efforts in devising a way of 
establishing practical compatibility in terms of achieving better 
concurrency. We propose the use of affected set of attributes 
called AMS (Access Mode Set) to automate the process of 
determining commutativity. 
 
1.2. Basic Assumptions 

Although CC algorithms need better be designed with the 
general commutativity in mind, according to [6], state-based 
commutativity potentially offers more CC but incurs more 
overhead since the scheduler needs to know intermediate state 
preceding the two operations whose commutativity is under 
question. In this research, we assume state-based commutativity 
for greater method-invocation compatibility because we think 
that the overhead is reduced by the fact that in OODB we can 
have CC specific to individual objects. 

Ideally, encapsulated objects are accessed only through 
explicitly defined interfaces. However, we believe bypassing 
these interfaces in some cases, like when making object-oriented 
code concurrent, is inevitable. We assume that enforcement of 
encapsulation is somehow relaxed in OODB as well. The same 
supposition is demanded by [5] where programming view of 
encapsulation have been differentiated from the database 
adaptation of that view. It was found in that work that there are 
some cases where encapsulation is either not needed or its 
enforcement need to be reduced.  

 
2. Example OODB Object Class 

We set forth explaining how to determine compatibility, 
using our approach, with flight Class shown in Fig. 1. The class 
provides 2 methods for booking economy class (EC) and 
business class (BC) seats, 2 methods for booking either class seat 
and if that class seats are sold-out then book the other class seat, 
and 2 classes for cancelling each class seat booking. 

 
3. Compatibility of Method invocation  

Transactions in OODB are modeled as sets of method 
invocations on objects. Concurrency level is subjected to the 
level at which object methods are concurrently invoked. This 
comes down to the effects each method has on the state of an 
object as presented by its attributes. In our approach, we employ 
dynamic monitoring of a set of these object state-attributes in 
terms of modes at which they are accessed. We call this set AMS 
(Access Mode Set) and is defined in section 3.1.  Generally there 
are two types of attributes; primitive and Object (user defined) 
attributes. For primitive attributes, we use ‘R ’, ‘W’ and ‘N’ for 
‘READ’, ‘WRITE’ and ‘NULL’ respectively as access modes. 
Since object-types attributes are user defined, their access modes 
are object-dependent. In our flight class, passenger is an object-
type attribute and we assume it has ‘A’ for ADD, ’D’ for 
DELETE, ’R’ for READ and ‘N’ for NULL as access modes. 

In case of multiple access modes, the most restrictive access 
mode takes precedence. From the basics of correctness of 
concurrent executions, write operation is more restrictive than a 
read operation for primitive attributes. Therefore precedence 
order is ‘W’ > ’R’ > ’N’. Our method requires that an object 
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class flight{ 
private:   int e, b;  /*no. of EC seats and BC seats.*/ 
          list<person> passenger;  /*passenger list.*/ 
public:  boolean E(person psg); /*book EC only.*/ 
         boolean EB(person psg); /*if EC is sold-out book BC.*/ 
         boolean B(person psg);  /*book BC only.*/ 
         boolean BE(person psg);  /*if BC is sold-out book EC.*/ 
         boolean cancelE(person psg);  /*cancel EC booking.*/ 
         boolean cancelB(person psg);  /*cancel BC booking.*/ 
} 
//implementation 
boolean E(person psg){    
   if (e< 40) then{ 
      e=e+1;  passenger.insert(psg,’E’); 
      return TRUE;  
   } 
    else return FALSE;    
}  
boolean EB(person psg){ 
   if (E(psg)) then return TRUE 
   else{ 
      if(B(psg)) then return TRUE 
  else return FALSE; 
   } 
}  
boolean B(person psg) {    
   if (b< 10) then{ 
      b=b+1 ; passenger.insert(psg,’B’); 
      return TRUE; 
   } 
   else return FALSE; 
} 
boolean BE(person psg){ 
   if (B(psg)) then return TRUE 
   else{ 
      if(E(psg)) then return TRUE 
      else return FALSE; 
   } 
}  
void cancelE(person psg){e=e-1;passenger.delete(psg) } 

void cancelB(person psg){b=b-1; passenger.delete(psg)} 

NB: The flags ‘E’ and ‘B’ serve to indicate booked class. 
And numbers 40 and 10 stands for maximum numbers of 
EC and BC seats. 

Fig. 1: Flight class 

creator defines precedence for the access modes for object-type 
attributes. An additional access mode ‘E’, for EXCLUSIVE, is 
provided for cases where it is impossible or ambiguous to define 
restrictiveness. For instance, it is a little vague about 
restrictiveness of access modes ‘A’ and ‘D’ in a passenger object. 
So in case of multiple access modes (‘A’ and ‘D’) on passenger 
object we employ ‘E’ mode. 

Compatibility is determined in two steps. We explain in 
section 3.1 how to establish AMS as a first step of our approach. 
Here we present a simple algorithm used to get AMS. In section 
3.2, we explain method invocation conflicts using AMSs as a 
second step of our approach. 
 
3.1. Determination of AMS  

Fig. 2 shows an algorithm for determining AMS. 
We use a simplified CFG (Control Flow Graph) to determine 

possible execution flows. For flight class in Fig. 1, CFG is shown 
in Fig. 3. A root node is the flight class with methods as its 
children. Down after this level, every control structure constitutes 

a node. Children to any control structure will correspond to every 
possible evaluation of that control structure.  

Now, using the algorithm in Fig. 2, AMS of any method can 
be established as follows; 

For method M=EB (psg); 
1.      We declare AMS(M) as a set a1a2a3 where a1, a2 and a3 are 

access modes of e, b, and passenger respectively. 
2.     M=EB(psg) has 3 possible execution flows (c),(d) & (e) 

from Fig. 3. We proceed as follows; 
 (c) (d) (e) 
AMS(Mp) NNN NNN NNN 

AMS(Mn) WNA RNN RNN 
NWA NRN 

AMS(Mo) NNN NNN NNN 
AMS(Mf) WNA RWA RRN 

Note that there are two AMS(Mn)s for each execution flows (d) 
and (e) because there are two nested invoked methods for each 
flow. 

3.      This is shown in the last row of the table in step 2. 
4.      Lastly we combine AMS(Mf) of the three possible 

execution flows. 
AMS(Mf) of Execution flow (c) 
AMS(Mf) of Execution flow (d) 
AMS(Mf) of Execution flow (e) 

WNA 
RWA 
RRN 

Effective AMS(M=EB(person)) WWA 
 
Shown below in Table 1 are AMSs for all methods of a flight 
class. 

Table 1: AMSs for flight class  
Method E() EB() B() BE() cancelE() cancelB()

AMS WNA WWA NWA WWA WND NWD  
 
3.2. Invocation Compatibility 

As mentioned in section 1.2, we use the criteria of state-
based commutativity to establish compatibility. To test the effects 
of invocations, AMSs are compared item-wise for conflicting 
access modes. Below is how we define compatibility of access 
modes for flight class. We assume the definition of access modes 
conflicts is part of database metadata. For our flight class, we set 
up the following definition.  

 
The ordered pair α1α2 of access modes of an attribute by two 
different invocations is conflicting only for the following set of 
ordered pairs; {WR, WW, AR, DR, Eα’} where α’ is any access 
mode. 
 

Algorithm for Determining AMS(M) of method M 
1. Declare AMS as a set a of ordered Access Modes ai for i=1~N 

written as  a1a2…aN where N=Number of State-Attributes 
2. For each possible execution flow of Method M, establish 

2.1. AMS(Mp) for primitive state-attributes only. 
2.2. AMS(Mn) for nested invoked methods only. 
2.3. AMS(Mo) for object-type attributes only. 

3. Combine AMS(Mp), AMS(Mn) and AMS(Mo) by considering the 
most restrictive access mode to get AMS(Mf) for each 
possible execution flow. 

4. Combine AMS(Mf) by considering the most restrictive access 
mode to get AMS(M) 

Fig. 2: Algorithm for determining AMS 
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Using N for Non-conflicting and Y  for conflicting modes, 

the following can be depicted from the above definition;  
WR→Y , WW→Y , WE→ N , AD→ N  etc. 

Now, AMSs are compatible only if the results of all item 
wise comparisons are not conflicting. Without considering 
dynamic AMSs, from Table 1 the complete MCT for the flight 
class will be as shown in Table 2. Note here that, among other 
observations, ongoing execution of EB() is not compatible with 
any other method. However it is possible to achieve some 
compatibility by using dynamic AMSs derived from Fig. 3. 

Commonly, semantics have been exploited to increase 
concurrency. Likewise, in our approach of determining 
compatibility, we explore control structures to get more 
compatibility. Depending on evaluation of control structures, the 
access modes of some state-attributes might change. We take this 
into consideration and dynamically update AMS of an ongoing 
execution. 

Dynamically, at any intermediate node in Fig. 3, AMS is 
established as a combination of all other AMSs down all the 
children of that node. For example before “if(B(psg))” in method 
EB(psg). Effective AMS is as shown below; 

 
AMS at leaf (d) 
AMS at leaf (e)                         

RWA 
RRN 

Effective AMS(EB(person)) RWA 
 
At any point in time, the execution of EB() can be in one of 

five stages corresponding to 5 edges in the CFG(Fig. 4).We show 
below, in Table 3, AMSs of these five states and respective 
compatibilities. 
 

4. Evaluation 
Table 3 shows possibilities for compatibility for a method 

{EB()} which without dynamic compatibility was not compatible 
with any other method. Needless to say, there are some potential 
in this approach as far as concurrency is concerned. 

If we define )/( 0EBMP  as probability of compatibility of 
method M when method EB() is ongoing, then; 

 
 

.
Methods of No. Total

ongoing is EB when Methods Compatible No.of)/( 0 =EBMP
 

From Table 2, we get .0)/( 0 =EBMP  
 
 After considering dynamic compatibility )/( 0EBMP  becomes; 

,
Methods of No. Total

 stageat  EB when Methods Compatible of No.Stages
of No.

ip
i

i∑=  

 

where ip  is probability that EB is at stage i.  
Therefore with dynamic compatibility, from Table 3, we get 

.
6

62220)/( 54320 ppppEBMP ++++
=  

 

Practically, ip  is time- dependent value and very difficult 

to establish. For simplicity if )(tppi = , progress probability of 
method EB() at execution time t, then 

 

).(2)/( 0 tpEBMP =  
 

Evidently, although )(tp is a complex function, it is a non 
negative function. Thus,  )/( 0EBMP  is always likely to be 

WNA

flight

E(psg) EB(psg)

if(e<40)

true

RNN

false falsetrue true

if(b<10)

RNN
NWA
NNN

WNA
NNN

NRNWND

B(psg)BE(psg)

cancelE(psg)
cancelB(psg)

if(E(psg))

false

if(B(psg))

true false

NWA

if(B(psg))

NWA
NNN

NRN
WNA
NNN

NWD

if(E(psg))

true false

true false

RNN
NRN
NNN

NRN
RNN
NNN

(a) (b) (k) (l)(c) (d) (e) (f) (g) (h) (i) (j)

WNA
RWA RRN

NWA
WRA RRN

passenger
passenger

passenger passenger

 

Fig. 3. Simplified CFG showing AMSs 

 Table 2: Method Compatibility Table (MCT) for the flight class 

E() 
(WNA)

EB()  
(WWA)

B()  
(NWA)

BE()  
(WWA)

cancelE()  
(WND)

cancelB()  
(NWD)

E() - (WNA) YNN=X YNN=X NNN=O YNN=X YNN=X NNN=O

EB() -  (WWA) YNN=X YYN=X NYN=X YYN=X YNN=X NYN=X

B() -  (NWA) NNN=O NYN=X NYN=X NYN=X NNN=O NYN=X

BE()-  (WWA) YNN=X YYN=X NYN=X YYN=X YNN=X NYN=X

cancelE() -  (WND) YNN=X YNN=X NNN=O YNN=X YNN=X NNN=O

cancelB() - (NWD) NNN=O NYN=X NYN=X NYN=X NNN=O NYN=X

Ongoing Execution

Requested 
Invocation

 

Table 3: MCT for ongoing execution of EB() 

1   
(WWA)

2    
(WNA)

3    
(RWA)

4    
(RWA)

5     
(RRN)

E() - (WNA) YYN=X YNN=X NNN=O NNN=O NNN=O

EB() -  (WWA) YYN=X YNN=X NYN=X NYN=X NNN=O

B() -  (NWA) NYN=X NNN=O NYN=X NYN=X NNN=O

BE()-  (WWA) YYN=X YNN=X NYN=X NYN=X NNN=O

cancelE() -  (WND) YYN=X YNN=X NNN=O NNN=O NNN=O

cancelB() - (NWD) NYN=X NNN=O NYN=X NYN=X NNN=O

Ongoing Execution of EB()

Requested 
Invocation
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higher when considering dynamic compatibility. Note that the 
purpose of this representation is just to emphasize a point made 
earlier that there are some potential in this approach. This is not a 
generic evaluation. 

Before evaluating further performance benefits which can 
be achieved from this approach, there are some issues which 
need be looked upon. As pointed out in section 1.2, in some 
cases, bypassing encapsulation interfaces is inevitable in order to 
take advantage of OO. Since there is a clear tradeoff between 
concurrency and breach of OO concept, it is important that the 
extent by which encapsulation can be relaxed without 
compromising the meaning of OO be known. 

Also due to the fact that in this approach, invocation 
compatibility relies on the definition of conflicting access modes 
which subsequently is based on the update type, evaluation of 
this approach must be specific to a CC mechanism. The 
commonest update types employed in CC mechanisms are In-
place and deferred Updates. 

Moreover, the increased possibilities for compatibility in 
Table 3 are all falling within a quite small window of ongoing 
execution of method EB(). With increasing processor speeds, it is 
fair to say that this window might not be long enough for the 
effective exploitation of these possibilities. Of course, unless this 
approach is used in long-transaction systems, it does not hold 
much promise in increasing concurrency. 
 
5. Conclusion and Future work 

The approach aims at using concepts of commutativity 
which are increasingly successful in compiler optimization [7, 8]. 
We presented an automatic way to establish whether two method 
invocations on an OODB object are compatible and thus a means 
to increase transaction processing concurrency can be sought. 
This means is CC mechanism-based. We have demonstrated this 
approach against a flight class by showing possibilities of 
compatibilities where there was none. Particularly for the 
demonstrated case, the possibility is up to 100% depending on 
the execution stage at which the ongoing execution is. 

 This approach of automatic determination of 
compatibility of method invocations is at a very preliminary stage.  
It seems to place much burden on object creator for complex 
objects. Among other complicated tasks is to define access mode 
precedence for object-type attributes.  

Obviously future work in this line is finding better way of 
handling access modes of user-defined object-types attributes. 
Another unaddressed issue is the issue of nested transaction. 

Since OODB is modeled in terms of method invocations, nested 
transactions imply nested series of method invocations. In the 
mean time we feel that the best way of handling nested 
invocation is CC protocol dependent. This is also supported by 
[4] in which the transaction and sub transaction relationship 
seems to depend more on the way the two commit and abort. 
Also concerning state-base commutativity, there is an issue of 
tradeoff between increased concurrency and increased overhead 
on the scheduler.  
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Fig. 4: Five execution stages of method EB() 
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