
Preserving Integrity and Confidentiality of a Directed Acyclic Graph Model
of Provenance

Amril Syalim† Takashi Nishide† Kouichi Sakurai†

１． Introduction

In a system where we need to understand the processes that
have been executed to produce a result we need to record
provenance of the execution. By recording provenance we may
trace who have contributed to the creation of the result. This
feature is very important whenever we need to verify the process
of result's creation, for example in a distributed system (i.e. a grid
system), where a result may be produced by many parties in
different computers. Another real life example is in a hospital, a
medicine prescription may be created by a doctor by
collaborating with other doctors.

For a sequential execution of processes, provenance can be
represented in a form of chain [1,2]. A more expressive model
that is suitable for a parallel execution is a directed graph model
where nodes in the graph represent processes and the edges
represent relationships between the processes (nodes) [3,4].
Because provenance is tightly associated with time, many models
of provenance take the form of a directed acyclic graph (DAG)
[5].

In this paper, we are focusing on securing a directed acyclic
graph model of provenance in terms of integrity and
confidentiality. To ensure integrity of the provenance graph (i.e.
nodes and edges) we need to assure immutability and non-
repudiation properties of each node and edge in the provenance
graph. The contributors (i.e. the people or processes that
contribute in the provenance graph) can not cheat for any
purposes. The other parties in the provenance system (i.e. the
manager of the provenance graph that we refer in this paper as
the provenance owner), although powerful enough to manage
access to provenance, also can not cheat (i.e by changing the
provenance graph) without being detected.

We propose a method to protect integrity of provenance by
employing digital signature. Using this method, the contributors
and provenance owner both sign the provenance's nodes and
edges. To alter the nodes and edges without detected needs
collusion from the two parties which means to repeat the process
execution from beginning. To support confidentiality of the
provenance graph we need to define access control model to
provenance and how to enforce the access control model.
Provenance should only be accessed by the person who has the
right to access, for example an auditor who need to audit the
process. The system should support restricting access to only
some parts of the provenance.

Many access control models employ grouping mechanism to
improve efficiency and security (i.e. by using groups, roles,
security levels/compartments). We propose a grouping
mechanism for access control to provenance by utilizing two

grouping methods: grouping of entities in the provenance graph
based on paths and grouping entities based on compartments.
Grouping by paths is useful because the auditors who audit the
process should be interested in the causal relationship in the
provenance graph.

However access control by paths alone is not expressive to
enforce more specific policies (i.e. an auditor only can access a
part of nodes/edges in the paths). We complement the paths-
based access control with a compartment-based access control so
that we can enforce such policies. By using a compartment-based
access control, each node is assigned with a compartment and the
provenance owner grants access to the nodes in a compartment
by granting access to that compartment.

2 ． Integrity Mechanism: Digitally Signing the
Provenance Graph

An example of provenance graph with six contributors is
shown in the Figure 1. The Figure 1 shows that to produce the
final result, the contributor C5 uses the outputs of contributors
C1 and C2 while contributor C6 uses the output of contributors
C3 and C4. Contributor C7 uses the output of C5 and C6 which
later used by C8 and C9. The final process is executed by C10
that processes the outputs of C8 and C9. After each process is
executed and the provenance of the process (i.e. node) is
created/generated, the provenance is stored in the provenance
database. The other papers call the provenance database as a
provenance store.

Figure 1. Provenance Graph

We identify three groups of active entities involved in a

provenance system: provenance owners, contributors, and
auditors. A provenance owner is the owner of provenance that
mediates the provenance recording process and manages access
to the provenance. The contributors are the people who execute
process and contribute the results. Auditors are the people who
need to access the provenance graph, for example for reviewing
or auditing the process's execution.

Provenance is recorded after each process is executed by the
contributor. In a distributed system, before executing the
distributed process, a worflow (i.e. a distributed execution plan)
should be defined and sent to the provenance owner. The
process to create a workflow may involve some or all of
contributors. Based on the workflow, provenance owner sends

†Department of Informatics, Kyushu University

FIT2010（第 9回情報科学技術フォーラム）

161

D-031

（第2分冊）

each contributor information that is needed by the contributor to
execute each process in the workflow (i.e inputs of the process).
After a contributor execute a process, the contributor should
produce outputs which we refer as a document. The
provenance of the document is documentation of process
execution to produce the document. The provenance can be
automatically generated by the system where the contributor
execute the process or manually created by the contributor.

After execution of a process, the document and provenance of
the document are sent to the provenance owner which later
record them as a node in the provenance database. The
provenance owner may also send the document to contributors
that need the documents for their inputs.

After the provenance is recorded, there are some possible
integrity problems with provenance. We identify four main
problems: repudiation, alteration, deletion, and addition. A
contributor may deny that she/he has contributed the document
and its provenance. The document and provenance (i.e. nodes)
may be altered by an attacker so that they do not reflect original
process. Attacker may also delete a node or add a fake node.

The basic idea of the digital signature mechanism is whenever
a provenance of a document is recorded, both of the contributor
and provenance owner sign the document and the provenance
before storing the provenance to the database. Whenever a
contributor uses an output document of other contributor as an
input, the contributor should create the hash/checksum of the
input and store them as a provenance of the process executed by
the contributor.

We assume that each contributor, auditor and provenance
owner has a pair of public key and private key and each party can
retrieve the public keys of the other parties securely. The
private keys can only be accessed by the owner of the key. Let
Dn is the document created by a contributor identified by n and
Pn is a provenance of the document. The function H(Dn) is a
function that produce hash value of Dn. The function Sn is a
signing function where Sn(Dn) is a function that produce digital
signature of contributor n to document Dn. N is the number of
inputs used by a process to produce a document.

If a contributor n needs to use a document (i.e. Dn-1) produced
by another contributor (i.e. contributor n-1) as input, before the
contributor n executes the process, the provenance owner sends
the input that has been signed by the provenance owner and the
another contributor: So(Sn-1(Dn-1)). After verifying the document
and the signatures, the contributor n execute the process. The
contributor n signs the result Dn, its provenance Pn and hash of
the input H(Dn-1). The signed result, its provenance and hash of
the input is Sn(Pn, Dn, H(Dn-1)). The contributor sends them to the
provenance owner. The provenance owner signs them and
stores them in the database.

3．Confidentiality Mechanism: Path-based Access
Control and Encrypting the Provenance Graph

To protect confidentiality of provenance we need to prevent
confidential provenance information be accessed by unauthorized
people accessing the system. However, the system should also
support authorized access to provenance (i.e. authorized auditors

who need to access provenance to do audit and verify the process
of object creation). We propose an access control model based
on path on the provenance graph. The arguments of our
proposal is that an auditor normally needs to access all nodes that
have a path to the result because the nodes have causal
relationship to the result. We believe that this model is more
efficient and comfortable because the provenance owner can
easily create access based on paths in the provenance graph.

However, by using path-based only access control, we can not
create a more expressive policy (for example an auditor can only
access a part of the paths). We combine path-based policy with
another access policy based on compartments. Compartments
define separation between nodes in different security
level/classes and the auditors that can access those compartments.

We propose to implement the access control model by using
cryptographic mechanisms (i.e. encryption). This method is
especially important if we store the provenance in an untrusted
server (i.e. the provenance owner wants to outsource the storage
of provenance to a third party who may be not trusted). This
method can also be used if the provenance owner wants to
implement cryptographic-based access control (where the data is
encrypted and access rights are granted by giving the encryption
keys). The idea of our implementation for path-based access
control is to encrypt the nodes and store the encryption keys in
the children of the nodes.

Let Pn is the node that has been signed by the contributor n
and the provenance owner o and let Ek(Pn) is an encryption
function that encrypt Pn with private key k. To encrypt the
node Pn, the provenance owner define compartment of the node
and find the parent nodes. The provenance owner retrieves the
key associated with the compartment KC, the keys to encrypt the
parent nodes Kn-1 and the key to encrypt the grandparent node
Kk-1. The provenance owner generates two random keys: node's
key Kn and parent-key's key Kk and store the keys in a key
database managed by the provenance owner. The provenance
owner encrypts the node Pn with key KC. Then the provenance
owner re-encrypts the node with the key Kn. After that the
provenance owner encrypts the keys Kn-1 and Kk-1 with parent-
key Kk. Encrypted form of the node is EKn(EKC(Pn))|EKk(Kn-1|Kk-1).
The provenance owner stores encrypted form of the node in the
provenance database.

References

[1] Hasan, R., Sion, R., Winslett, M.: Preventing history forgery

with secure provenance. ACM Transactions on Storage 5(4),

12:1–12:43 (2009)

[2] Hasan, R., Sion, R., Winslett, M.: The case of the fake picasso:

Preventing history forgery with secure provenance. FAST 2008.

[3] Moreau, L., Freire, J., Futrelle, J., McGrath, R.E., Myers, J.,

Paulson, P.: The open provenance model: An overview. IPAW

2008.

[4] Bowers, S., McPhillips, T., Lud¨ascher, B., Cohen, S.,

Davidson, S.B.: A model for user-oriented data provenance in

pipelined scientific workflows. IPAW 2006.

[5] Braun, U., Shinnar, A., Seltzer, M.I.: Securing provenance.

HotSec (2008)

FIT2010（第 9回情報科学技術フォーラム）

162

（第2分冊）

