
Tree-based Parallel Algorithms with  
 Reduced Inter-Processor Communication for Association Rule Mining 

 
NGUYEN VIET ANH†, SHIGERU OYANAGI†, AND KATSUHIRO YAMAZAKI†

 
1 Introduction 

In this paper we present two parallel algorithms for mining 
association rules that are well suited for distributed memory 
parallel computers. The algorithms are developed based on 
FP-growth method [3]. The first algorithm is a task parallel 
formulation using a static load balancing technique. The sec-
ond algorithm improves upon the first algorithm by dynami-
cally balancing the load when the static task assignment leads 
to load imbalance. We use the count matrix technique to 
compute the weight of tasks and to distribute tasks to proces-
sors. This technique also helps to reduce the time needed to 
scan the trees and to reduce communication cost. We also use 
the hash tree technique to group similar prefix-paths extracted 
from the tree, and thus can greatly reduce the amount of in-
formation exchanged among processors. Our experiments 
show that the algorithms are capable of achieving very good 
speedups, and of substantially reducing the amount of time 
when finding frequent patterns in very large databases. 

2 Initial database partitioning 
If p is the total number of processors, the original database 

is initially partitioned into p equal-size parts, each one then 
assigned to different processor. Each processor scans the da-
tabase once and enumerates the local occurrences. All proces-
sors then obtain frequent items by exchanging local counts 
with all other processors using a global sum-reduction opera-
tion. These frequent items are sorted in support descending 
order to form L, list of frequent items. Note that L is identical 
for all processors. Each processor scans its local data to build 
the local FP-tree in exactly the same way with serial FP-tree 
algorithm [3].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To understand this process, let’s examine the example in 

Figure 1. Suppose we have 3 processors. The transactional 

database is described in the table. The minimum support in 
this example is set to 5. 

Building the local FP-trees is not a final goal but a means to 
discover all frequent patterns without any additional database 
scan. According to FP-growth method, in order to mine all 
frequent patterns concerning item i (in header table) we need 
to construct i’s conditional pattern base and then i’s condi-
tional FP-tree Ti. The branches that contain item i may reside 
in multiple local FP-trees, and we need to collect them from 
all possessing processors to form i’s conditional base. We do 
not prove the correctness of this approach because of the 
length limitation of this paper but focus on how to distribute 
the works evenly among all processors and reduce the work 
load imbalance. 

3 Static Load Balancing Algorithm (SLB) 
The key idea behind this algorithm is to calculate the 

amount of computation for each item in the header table of 
the first FP-tree (the tree constructed from the original data-
base) and then to divide those items into p equal parts and 
assign each part to a processor. When processing item i we 
first build i’s conditional pattern tree and recursively generate 
subsequent conditional pattern bases and subsequent FP-trees 
until all frequent patterns are mined. The number of iterations 
is exponentially proportional to the height of i’s conditional 
FP-tree that is bounded by number of items in its header table. 
Therefore, the length of the header table of the conditional 
FP-tree of item i can be used to measure i’s computation cost. 

In FP-growth method, for each item i in the header of the 
FP-tree TØ, two traversals of TØ are needed for constructing 
the conditional FP-tree Ti. The first traversal constructs 
header table of the new tree by finding all frequent items in 
the conditional pattern base of i. The second traversal con-
structs the new tree Ti. In parallel environment, after scanning 
the trees, all processors need to communicate with each other 
to form the global information. Note that the support for an 
item j in the conditional pattern base of i is, in fact, the num-
ber of transactions that contain both j and i. If we have an 
array that store the count of all pair items, we can get the 
header table directly from that count array, and therefore, the 
first tree scan and information exchanging can be omited. 
Figure 2 shows how the count matrix  is used to calculate the 
weight of item G.  

 
 
 
 
 
 
 
 
 
 
 
 
After having the computation weight of all items, we use 

the bin-packing algorithm to pack them into p equal-sized 
buckets. Each bucket is then assigned to one processor. 

The count matrix contains the count arrays of all items in 
database. It is stored in a file and is loaded each time the pro-

Root 1 

B:3 

A:2 D:1 

D:2 F:1 

F:2 G:1 

G:2 

Root 2

A:2 B:2

A:2

D:1

F:1

G:1

F:1 

Items (Ordered) Freq Items ProcessorID 

1 
2 
3 

A B C D E 
F B D E G 
B D A E G 

B A D 
B D F G 
B A D G 

 
P0

4 
5 
6 

A B F G D 
B F D G K 
A B F G D 

B A D F G 
B D F G 

B A D F G 

 
P1

7 
8 
9 

A R M K O 
B F G A D 
A B F M O 

A 
B A D F G 

B A F 
 

P2

TG

     Item  Count 

Root 0 

B:3 

A:2 D:1 

D:2 F:1 

G:1 G:1 

B 
A 
D 
F  
G 

8 
7 
7 
6  
6 

Figure 1. Database partitioning and local FP-trees 

    Item   Count 
Null 

B:6

D:6

G:5

B 
D 
F  

6 
6 
5 

weight of G is 3 

B A D F

G 6 4 6 5

F 5 5 5

D

A 6

57

G’s array 

Figure 2. Using count matrix to measure item weight 

†Graduate School of Science and Engineering, Ritsumeikan University 

17

D-007

FIT2005(第4回情報科学技術フォーラム)



gram runs. Only count arrays for frequent items are extracted 
by simply reading first n-1 rows of the file into allocated ar-
rays, with n is the number of frequent items. The count matrix 
is built in a preprocessing step and is maintained during the 
life time of the database. By using count matrix we can also 
reduce the time for second Fp-tree scan because we can ne-
glect all infrequent items when examining the paths from 
nodes in node-links up to the root of the tree. 

Now let us examine the conditional bases exchanging issue. 
For an item in the header table, millions of prefix-paths can 
be found from the tree, and thus lead to a huge amount of 
information needed to be exchanged among processors. How-
ever, in fact,  paths with the form i1→i2→…→in may appear 
many times, and only differ in the support counts. What we 
need to do is to sum up all the counts and send it with the path 
i1→i2→…→in only once. In our algorithm this problem is 
solved by using hash tree technique.  

4 Dynamic Load Balancing Algorithm (DLB) 
This algorithm monitors the load of processors and redis-

tributes the work between processors when the static task 
assignment leads to the load imbalance. 

The algorithm works as follows. The early period of this 
algorithm is similar to SLB. However, processors will not 
process independently until all patterns are mined. When a 
processor finishes its portion of allocated work, it selects a 
donor processor and sends it a request for work. If the donor 
processor does not contain enough work, it will send a rejec-
tion; otherwise it will send part of its work to requesting 
processor. Upon receiving new work the processor starts 
processing newly received work until it becomes idle again. A 
control process is used to maintain the rank of the process to 
which the next request will be sent, and when a process run 
out of work, it get the rank from the control process. This 
process continues until every processor completely processed 
all items assigned to it. Each processor manages a local stack 
whose stack node contains an item and its corresponding con-
ditional pattern base. Dijkstra-Scholten termination detection 
algorithm [2] is used to detect whether all processors finished 
their work and there was no message in transition, and thus 
the overall computation have finished. 

One key issue in the dynamic load balancing approach is 
managing the task granularities. If the weight of this task is 
too small, the amount of communication may increase. Oth-
erwise, if the weight of this task is too large, it will take a 
significant amount of time before a processor can service 
work requests. In both cases the overall performance can be 
decreased. To deal with this problem we use a parameter 
named maxload. When processing an item with the weight 
greater than maxload, if a subsequent conditional pattern base 
has the weight smaller than maxload, it will be processed until 
completion. All subsequent conditional pattern bases having 
weight greater than maxload will be put into local stack and 
will be processed in the next iterations. 

We have carried out several optimizations to increase the 
performance of the algorithm, namely, the control of servic-
ing time, the order of items to be processed, and avoiding 
blocking when exchanging conditional pattern bases. 

5 Experimental Results 
All experiments were performed on the PC Cluster that 

consists of 16 nodes. Each node has 2 processors Intel Xeon 
2.8GHz, 2 GB of memory, and 80 GB of hard disk. The nodes 
are connected by 1Gbs Ethernet network. For performance 
evaluation we use different synthetic datasets generated using 
procedure described in [1].  

Figure 3 compares the scalability of SLB and DLB as the 
minimum support decreases from 0.2% to 0.08%. The ex-
periments are performed on an 8 node configuration on two 
datasets, T25I10D2000K and T25I20D1000K.  

 

0

20

40

60

80

100

0.2 0.15 0.1 0.09 0.08

Minimum support (%)

R
es

po
ns

e 
tim

e 
(s

ec
) SLB-T25I10D2000K

DLB-T25I10D2000K
SLB-T25I20D1000K
DLB-T25I20D1000K

 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 3: Scalability with minimum support  
SLB scales almost equally with DLB on T25I10D2000K. 

However, DLB scales much better than SLB on 
T25I20D1000K. This is because with T25I20D1000K, when 
the minimum support goes down, the number of long frequent 
itemsets increase dramatically compared with dataset 
T25I10D2000K, and thus likely lead to the load imbalance. 

Figure 4 shows the speedups obtained for two algorithms 
on the dataset T25I20D1000K when minimum support is set 
to 0.1%. Both SLB and DLB have very good speedup per-
formance. When the number of processors increases, DLB 
run a little bit better than SLB. This is because the load im-
balance tends to increase with bigger numbers of processors. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

0
10
20
30
40
50
60
70

1 2 4 8 16

Number of processors

Re
sp

on
se

 ti
m

e 
(s

ec
) SLB

DLB

 Figure 4: Speedup 

6  Conclusion and future works 
We propose two parallel algorithms for mining association 

rules based on FP-growth method. In many situations, the 
algorithms can reduce the communication required to ex-
change the conditional bases. Our experiments confirms that 
both SLB and DLB achieve very good performance and good 
speedup in large databases. Our future research will explore 
the parallel aspects of these algorithms in more details. 

References 
[1] R. Agrawal and R. Srikant. Fast algorithms for mining asso-

ciation rules. In 20th VLDB Conf., 1994  
[2] E. W. Dijkstra, W. H. Seijen, and A. J. M. Van Gasteren. 

Derivation of a termination detection algorithm for a  dis-
tributed computation. Information Processing Letters, 1983  

[3] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without 
candidate generation. In Proc. of the ACM SIGMOD Conf. 
on Management of Data, 2000 


	tyt_no: 
	typ_page1: 18
	tyt_a: 
	typ_page: 
	tyt_head: 
	tyt_head1: FIT2005(第4回情報科学技術フォーラム)


