

Accumulative Mining of Frequent Patterns

Tran MINH QUANG (*) Shigeru OYANAGI (*) Katsuhiro YAMAZAKI (*)

1. Introduction
Association rule mining is to analyze relationships
between data in a large database. It has been applied in
various fields including market analysis, customer habit
study, detection, classification, clustering and so on.
However, it consumes a great amount of time. There are 2
steps in mining association rules: Finding all frequent
patterns and then generating association rules from above
frequent patterns. The second step is the easiest one of two
and the overall performance is determined by the first step
[1]. Various researches have been done under the Apriori-
like approach [2] to improve performance of the frequent
pattern mining task but the results were not as much as
expected due to many scans on dataset [3]. Recently, tree
based approach has been proposed to compact data in tree-
like data structures minimizing search space hence
improve the mining performance. The most prominent one
is the frequent pattern tree (FP-tree) which scans database
only twice and then applies FP-growth algorithm to mine
frequent patterns from the tree [4]. This method
substantially solves the stalemate of the Apriori-like
approaches but is not flexible in mining with different
support thresholds. The tree has to be rebuilt from the
scratch whenever the support threshold is changed. This
research aims to propose a flexible way of mining frequent
patterns with different support thresholds in manner of
accumulative mining by extending the idea of the FP-tree
method.

The rest of the paper is organized as follows. Section 2 is
the ideas of extending FP-tree method for “building once –
mining anytime” and accumulative mining. The
experimental evaluation is presented in section 3. Section
4 is discussions and future work.

2. Accumulative Mining Frequent Patterns
2.1. Building Once –Mining Anytime
In FP-tree method, data is compacted in a prefix frequent
pattern tree (FP-tree). The FP-growth algorithm is then
applied to mine frequent patterns from the tree. The
process of this method is described as follows: (1)
According to a given support threshold Ө, dataset is
scanned twice to build the FP-tree. The first scan is to
recognize frequent items that will appear in the tree and
the second scan is to build the tree [4]. (2) FP-growth
algorithm is applied to mine frequent patterns. For each
frequent item above, FP-growth algorithm traverses the
tree to recognize its conditional pattern bases, considers

them as a sub-dataset, and builds the conditional FP-tree
for this sub-dataset. The FP-growth algorithm is then
continually applied on this conditional FP-tree recursively
until final frequent patterns are found.

As mentioned above an FP-tree is built based on a support
threshold, hence whenever the support threshold is
changed the tree has to be rebuilt from the scratch.
Moreover, to recognize conditional pattern bases for each
frequent item, FP-growth algorithm has to traverse the tree
many times which costs a great amount of time. For
solving this problem we propose to build a “global” FP-
tree (a tree with the smallest support threshold among
desire support thresholds, in a general case this support
threshold is 1 - in support count number). Then
information (in fact are conditional pattern bases of all
frequent items) of the tree is saved into a file, called
“conditional patterns” file. The conditional pattern bases
are sorted by the descending order of frequent items’
supports. Therefore the file is conveniently be read from
the beginning until a place where the support of item
becomes unsatisfied a given support threshold. This file
can be read any time to mine frequent patterns with any
different support threshold. This is the idea of “building
once – mining anytime”. Experimental results in the next
section reveal that this approach significantly improves the
performance compared to the original FP-tree method.

2.2. Reusing Frequent Patterns
Let Ө1, Ө2 (Ө1> Ө2) be two support thresholds and S1,
S2 be their two corresponding frequent pattern sets,
obviously S2 ⊇ S1. Call S2 = S1 + P in which P is a set
of frequent patterns that have support Ө, where
Ө2<=Ө<Ө1. It is very easy to extract S1 from S2, if S2
has already been mined, because the frequent patterns in
S2 are sorted by the descending of their supports. The
problem reveals in the converse case. Assume that S1 has
already been mined before, and S2 is requested to be
mined. The traditional approach is to mine S2 from the
beginning. While S2 is being mined by this way, all
frequent patterns that satisfy Ө1 (included in S1) have to
be remained again. The computation time can be reduced

FP
1

 FP-
Growth

θ1

θ2

θn

FP-
file

Dataset

Global
FP-Tree

FP
2

FP
n

Figure1: Building once – Mining anytime

D-006

FIT2005(第4回情報科学技術フォーラム)

* Graduate School of Science and Engineering,
Ritsumeikan University, Biwako-Kusatsu Campus Noji
Higashi 1 chome, 1-1 Kusatsu, 525-8577 Shiga-ken, JAPAN
15

if S1 is reused, and P is the only one has to be mined.
After that, P and S1 are merged together to obtain S2.

With the advantages of the “conditional patterns” file
mentioned above, P can easily be mined as described
bellow:

Figure 2 is a conditional patterns file in which appropriate
portions of data can be read according to given support
thresholds. Assume that setofPattern mine(int θ,
dataset D) is a routine to mine frequent patterns in
dataset D with support threshold θ. In traditional way,
we can mine S1, S2 by calling this routine, given a
corresponding portion of dataset with an appropriate
support threshold: S1=mine(θ1, D1); S2=mine(θ2,
D2). As mentioned above, S2=S1+P and S1 has been
already mined. To mine S2 we just need to mine P only.
Analyzing more detail, we can see that P=P12+P22, where
P12 and P22 are frequent pattern sets which satisfy θ2
only (not satisfy θ1) in D1 and in D2-D1 respectively. P12
and P22 can be mined as following:

P12=mine(θ2<=θ<θ1, D1)
P22=mine(θ2, D2-D1)

Finally, merge them together with S1 to obtain S2:
 S2=S1+P12+P22.

3. Experimental Evaluation
The experiment was taken in a synthetic dataset of 50000
transactions, 1000 items and the average of transaction
length is 10. Figure 3, displays the computation time
needed to mine frequent patterns with the support
thresholds, θ, changed from 30 to 3 according to three
methods above. The last column represents for the
“accumulative mining” method. For this method, at
support threshold equal to 30 (θ2=30), it was assumed
that the frequent pattern set with support threshold equal to
50 (θ1=50) has already been mined and was reused. In
the rest groups of columns, the computation time of this
method is presented with the assumption that the frequent
pattern set for the previously adjacent group was reused.
For example, at θ2=20, it was assumed that the frequent
pattern set with θ1=30 was reused, and so on.

The results show that “building once – mining anytime”
approach is significantly better than the original FP-tree
method which saves about 25% (up to 50%) of the
computation time. The method of reusing frequent patterns
for accumulative mining is slightly better than “building

once – mining anytime” method and it seems to be much
better in the case of two support thresholds are almost the
same and are both small, for instance θ2=3 and θ1=4.

Experim ental results

0

50

100

150

200

250

300

30 20 10 5 4 3

Support threshold (count num ber)

R
es

po
ns

e
tim

e
(s

ec
)

Original FP -tree

M ultiple mining

A ccumulative mining

FP-File

4. Discussions and Future Work
In this research we have proposed an extension to the FP-
tree method for frequent patterns mining. The
experimental results show a substantial improvement in
performance. The improvement is due to three main
reasons. Firstly, the tree is only built once at the first time
and can be reused to mine any time later. Second,
characteristics of the “conditional patterns” file permit FP-
growth algorithm to recognize conditional pattern bases
more directly without traversing the tree which save a
great amount of time. Finally, the frequent pattern set with
the greater support threshold is reused for mining a
frequent pattern set with a smaller support threshold in an
accumulative manner. One of the most disadvantages of
this method is the limitation of the memory which may not
fit the “global” FP-tree. This problem can be solved by
database partitioning. The idea of database partitioning
also leads us a new possible direction for future work in
which parallel computing should be applied into the
association rules mining accompanied with this extension.

References:
[1] Han, J., Kamber,M. Data Mining Concepts and

Techniques, San Francisco: Morgan Kaufmann, 2001
[2] Agrawal, R, and Srikant, R. Fast algorithm for mining

association rules. VLDB, 1994.
[3] Savasere, A., Omiecinski, E., and Navathe, S. An

efficient algorithm for Mining Association rules in
large databases. Proceedings of VLDB Conference.
1995.

[4] Han, J., Pei, J., and Yin, Y. Mining frequent patterns
without candidate generation. SIGMOD, 2000, pp. 1-
12.

Figure3: Experiment result

θ2 (θ2< θ1)

 D1

 D2 - D1

θ1 D2

Figure2: Accumulative mining

	tyt_no:
	typ_page1: 16
	tyt_a:
	typ_page:
	tyt_head:
	tyt_head1: FIT2005(第4回情報科学技術フォーラム)

