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1. Introduction 
Association rule mining is to analyze relationships 
between data in a large database. It has been applied in 
various fields including market analysis, customer habit 
study, detection, classification, clustering and so on. 
However, it consumes a great amount of time. There are 2 
steps in mining association rules: Finding all frequent 
patterns and then generating association rules from above 
frequent patterns. The second step is the easiest one of two 
and the overall performance is determined by the first step 
[1]. Various researches have been done under the Apriori-
like approach [2] to improve performance of the frequent 
pattern mining task but the results were not as much as 
expected due to many scans on dataset [3]. Recently, tree 
based approach has been proposed to compact data in tree-
like data structures minimizing search space hence 
improve the mining performance. The most prominent one 
is the frequent pattern tree (FP-tree) which scans database 
only twice and then applies FP-growth algorithm to mine 
frequent patterns from the tree [4]. This method 
substantially solves the stalemate of the Apriori-like 
approaches but is not flexible in mining with different 
support thresholds. The tree has to be rebuilt from the 
scratch whenever the support threshold is changed. This 
research aims to propose a flexible way of mining frequent 
patterns with different support thresholds in manner of 
accumulative mining by extending the idea of the FP-tree 
method.  
 
The rest of the paper is organized as follows. Section 2 is 
the ideas of extending FP-tree method for “building once – 
mining anytime” and accumulative mining. The 
experimental evaluation is presented in section 3. Section 
4 is discussions and future work. 
 
2. Accumulative Mining Frequent Patterns 
2.1.  Building Once –Mining Anytime 
In FP-tree method, data is compacted in a prefix frequent 
pattern tree (FP-tree). The FP-growth algorithm is then 
applied to mine frequent patterns from the tree. The 
process of this method is described as follows: (1) 
According to a given support threshold Ө, dataset is 
scanned twice to build the FP-tree. The first scan is to 
recognize frequent items that will appear in the tree and 
the second scan is to build the tree [4]. (2) FP-growth 
algorithm is applied to mine frequent patterns. For each 
frequent item above, FP-growth algorithm traverses the 
tree to recognize its conditional pattern bases, considers 

them as a sub-dataset, and builds the conditional FP-tree 
for this sub-dataset. The FP-growth algorithm is then 
continually applied on this conditional FP-tree recursively 
until final frequent patterns are found.  
 
As mentioned above an FP-tree is built based on a support 
threshold, hence whenever the support threshold is 
changed the tree has to be rebuilt from the scratch. 
Moreover, to recognize conditional pattern bases for each 
frequent item, FP-growth algorithm has to traverse the tree 
many times which costs a great amount of time. For 
solving this problem we propose to build a “global” FP-
tree (a tree with the smallest support threshold among 
desire support thresholds, in a general case this support 
threshold is 1 - in support count number). Then 
information (in fact are conditional pattern bases of all 
frequent items) of the tree is saved into a file, called 
“conditional patterns” file. The conditional pattern bases 
are sorted by the descending order of frequent items’ 
supports. Therefore the file is conveniently be read from 
the beginning until a place where the support of item 
becomes unsatisfied a given support threshold. This file 
can be read any time to mine frequent patterns with any 
different support threshold. This is the idea of “building 
once – mining anytime”. Experimental results in the next 
section reveal that this approach significantly improves the 
performance compared to the original FP-tree method.  
 
 
 
 
 
 
 
 
 
 
2.2.  Reusing Frequent Patterns  
Let Ө1, Ө2 (Ө1> Ө2) be two support thresholds and S1, 
S2 be their two corresponding frequent pattern sets, 
obviously S2 ⊇  S1. Call S2 = S1 + P in which P is a set 
of frequent patterns that have support Ө, where 
Ө2<=Ө<Ө1. It is very easy to extract S1 from S2, if S2 
has already been mined, because the frequent patterns in 
S2 are sorted by the descending of their supports. The 
problem reveals in the converse case.  Assume that S1 has 
already been mined before, and S2 is requested to be 
mined. The traditional approach is to mine S2 from the 
beginning. While S2 is being mined by this way, all 
frequent patterns that satisfy Ө1 (included in S1) have to 
be remained again. The computation time can be reduced 
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if S1 is reused, and P is the only one has to be mined. 
After that, P and S1 are merged together to obtain S2. 
 
With the advantages of the “conditional patterns” file 
mentioned above, P can easily be mined as described 
bellow: 
 
 
  
 
 
 
 
 
 
 
 
 
Figure 2 is a conditional patterns file in which appropriate 
portions of data can be read according to given support 
thresholds. Assume that setofPattern mine(int θ, 
dataset D) is a routine to mine frequent patterns in 
dataset D with support threshold θ. In traditional way, 
we can mine S1, S2 by calling this routine, given a 
corresponding portion of dataset with an appropriate 
support threshold: S1=mine(θ1, D1); S2=mine(θ2, 
D2). As mentioned above, S2=S1+P and S1 has been 
already mined. To mine S2 we just need to mine P only. 
Analyzing more detail, we can see that P=P12+P22, where 
P12 and P22 are frequent pattern sets which satisfy θ2 
only (not satisfy θ1) in D1 and in D2-D1 respectively. P12 
and P22 can be mined as following: 

P12=mine(θ2<=θ<θ1, D1) 
P22=mine(θ2, D2-D1) 

Finally, merge them together with S1 to obtain S2:  
 S2=S1+P12+P22. 
 
3. Experimental Evaluation 
The experiment was taken in a synthetic dataset of 50000 
transactions, 1000 items and the average of transaction 
length is 10. Figure 3, displays the computation time 
needed to mine frequent patterns with the support 
thresholds, θ, changed from 30 to 3 according to three 
methods above. The last column represents for the 
“accumulative mining” method. For this method, at 
support threshold equal to 30 (θ2=30), it was assumed 
that the frequent pattern set with support threshold equal to 
50 (θ1=50) has already been mined and was reused. In 
the rest groups of columns, the computation time of this 
method is presented with the assumption that the frequent 
pattern set for the previously adjacent group was reused. 
For example, at θ2=20, it was assumed that the frequent 
pattern set with θ1=30 was reused, and so on.  
 
The results show that “building once – mining anytime” 
approach is significantly better than the original FP-tree 
method which saves about 25% (up to 50%) of the 
computation time. The method of reusing frequent patterns 
for accumulative mining is slightly better than “building 

once – mining anytime” method and it seems to be much 
better in the case of two support thresholds are almost the 
same and are both small, for instance θ2=3 and θ1=4.   
 

Experim ental results

0

50

100

150

200

250

300

30 20 10 5 4 3

Support threshold (count num ber)

R
es

po
ns

e 
tim

e 
(s

ec
)

Original FP -tree

M ultiple mining

A ccumulative mining

 

FP-File

 
 
4. Discussions and Future Work 
In this research we have proposed an extension to the FP-
tree method for frequent patterns mining. The 
experimental results show a substantial improvement in 
performance. The improvement is due to three main 
reasons. Firstly, the tree is only built once at the first time 
and can be reused to mine any time later. Second, 
characteristics of the “conditional patterns” file permit FP-
growth algorithm to recognize conditional pattern bases 
more directly without traversing the tree which save a 
great amount of time. Finally, the frequent pattern set with 
the greater support threshold is reused for mining a 
frequent pattern set with a smaller support threshold in an 
accumulative manner. One of the most disadvantages of 
this method is the limitation of the memory which may not 
fit the “global” FP-tree. This problem can be solved by 
database partitioning. The idea of database partitioning 
also leads us a new possible direction for future work in 
which parallel computing should be applied into the 
association rules mining accompanied with this extension.    
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