CG-001

FGD-PET に基づく高 SUV 領域の抽出と特徴解析 Extraction and Feature Analysis of High SUV Regions Based on FDG-PET

鳥越 庸平[†] 戸崎 哲也[‡] Yohei Torigoe Tetsuya Tozaki 千田 道雄[§] Michio Senda

1. はじめに

がんの死亡者数と罹患者数は年々増加し続けている。こ れらを減少させるには、がん検診による早期発見が必要不 可欠である。近年,がんの早期発見に有効であるとして、 がん検診に PET(Positron Emission Tomography)を用いる医 療機関が増加している.この PET によるがん検診や診断で は、トレーサーとして主に FDG(2-deoxy-2-[18F]fluoro-Dglucose)が用いられている.ブドウ糖と同様の性質を持つ FDG が、高い糖代謝を持つがん細胞に多く集積するため、 がんを疑う領域を画像化することが可能となる.FDG-PET の登場により、全身を一度に検査することが可能となった。 一方で、FDG が集積する箇所はがん細胞だけでなく、脳や 心筋、尿道などにも集積する.そのため、擬陽性も多く含 み、FDG-PET で撮像された陰影から良悪性を判断するの は困難である.

そこで、本研究では、医師によってがんを確定された 4 症例の FDG-PET 像の 4 次元超曲面曲率を算出し、曲率値 に基づいて高 SUV 領域の抽出を行う。ここで SUV とは、 Standardized uptake value を意味し、FDG-PET において FDG の臓器やがん細胞への集積の強さを表すための重要な 診断指標である。その抽出された領域に対して機能的な指 標と形態的な指標に基づいた特徴解析を行い、それらを定 量評価する。これにより、がん特有の特徴あるいは、医師 による指摘は無いが、がんによく似た特徴を持つ陰影を絞 り込み、その結果について報告する。

2. FDG-PET 像

本研究で使用する FDG-PET 像は、兵庫県神戸市にある 先端医療センター病院において、GE 社製 Discovery で撮影 されたものである。スライス厚は 3.27mm、ピクセルサイ ズは 4.69mm、体軸方向のスライス枚数は患者の身長によ り異なるものの、概ね 150 から 180 枚程度である。撮影は 大腸がんを疑われた患者に対して行われ、手術等で大腸が んが確定した 4 症例の FDG-PET 像を使用する。内訳は回 盲部が 1 症例、直腸がんが 2 症例、上行結腸がんが 1 症例 である。図 1 に回盲部にがんが存在する症例を、図 2 には 直腸にがんが存在する症例のコロナル像を示す。それぞれ (a)にがんが存在するスライス像を、(b)に MIP 像を示す。 ここで, MIP とは Maximum Intensity Projection を意味し, 投影線上の最大濃度値を投影面に投影する手法で,処理が 簡単ではあるが描画能力が高く,医療現場ではよく用いら れる手法である.

↑神戸市立工業高等専門学校電気電子工学専攻科 ↓神戸市立工業高等専門学校電子工学科教授 §先端医療センター 分子イメージング研究部

(a)スライス画像(b)MIP 像図1<回盲部がん症例</td>

(a)スライス画像 (b)MIP像 図2 直腸がん症例

3. 異常陰影候補抽出

FDG-PET 像では、がん細胞及び、脳、膀胱等の FDG が 多く集積する領域は高 SUV 領域となり、濃度値が周辺よ り高くなる。しかし、それらの領域が存在する臓器や部位 に応じて背景バイアス成分が異なるため、均一なしきい値 設定による異常陰影領域の抽出は困難である。ここでは、 FDG-PET 像の 4 次元超曲面の曲率を算出し、その曲率値に 基づいて高 SUV 領域の抽出を行う。

本研究では用いる4次元超曲面の曲率は、文献[1]による もので、3次元濃淡画像の三つの空間軸 X-軸, Y-軸, Z-軸 に加え、第4軸目として濃度値をとり、3次元画像濃淡画 像を4次元空間における4次元超曲面と考えたときの法曲 率である.4次元超曲面の曲率では主曲率が三つ存在し、 この三つの主曲率の符号と絶対値によって超曲面の曲がり 具合が記述される[2].

4 次元超曲面の曲率は式(1)で示す第 1 基本式と式(2)で示 す第 2 基本式から式(3)の行列を求め、この行列Wの固有値 $\lambda_1, \lambda_2, \lambda_3$ として与えられるものである.ここで、 f_x, f_y, f_z $f_{xx}, f_{xy}, f_{xz}, f_{yy}, f_{yz}, f_{zz}, f_{zy}$ はそれぞれf(x, y, z)の偏導 関数を表し、3 次元 PET 像と 3 次元ガウス関数との畳み込

(e)三つの主曲率の重ね合わせ 図3 回盲部がんの4次元超曲面曲率

みによって計算する.ここで、対象とする候補領域の大き さを考慮して、標準偏差 σ = 3.0とした.今、行列Wの三つ の固有値を $|\lambda_1| \ge |\lambda_2| \ge |\lambda_3|$ とすると、固有値に対応する 固有ベクトル e_1, e_2, e_3 は互いに直交し、その方向は各固有 値から得られる曲率に対応する輝度変化の方向と一致する [3].ここでは、固有値の絶対値の大きい順に第1曲率、第 2曲率、第3曲率と定めることとする.

$$F_{1} = \begin{pmatrix} 1 + f_{x}^{2} & f_{x}f_{y} & f_{x}f_{z} \\ f_{y}f_{x} & 1 + f_{y}^{2} & f_{y}f_{z} \\ f_{z}f_{x} & f_{z}f_{y} & 1 + f_{z}^{2} \end{pmatrix}$$
(1)

$$F_{2} = -\frac{1}{D} \begin{pmatrix} f_{xx} & f_{xy} & f_{xz} \\ f_{yx} & f_{yy} & f_{yz} \\ f_{zx} & f_{zy} & f_{zz} \end{pmatrix}$$
(2)

ただし,
$$D = \sqrt{1 + f_x^2 + f_y^2 + f_z^2}$$

 $W = F_1^{-1}F_2$ (3)

回盲部がんの症例に曲率計算を行った処理結果を図3に示 す.(a)は原画像を,(b)は第1曲率,(c)は第2曲率,(d)は 第3曲率の値を基に画像化したものを、(e)は三つの主曲率

(b)第1曲率

(c)第2曲率(d)第3曲率図4直腸がんの異常陰影抽出

の画像を重ねたもの示す. どの図も体軸方向に MIP 処理を 行った MIP 像である.

処理結果より,第1曲率及び、第2曲率は線状陰影、第3曲率は孤立陰影に強く反応していることが確認できる。 これより第1曲率及び,第2曲率の強度は濃度勾配を表し, 第3曲率は限局性を表現していると考えられる。

次に、各曲率値に基づいて高 SUV 領域の抽出を行った 結果の一例を図 4 に示す。これは直腸がんの症例に対して 行ったものである。(a)は原画像を、(b)は第 1 曲率,(c)は 第 2 曲率,(d)は第 3 曲率の曲率値に基づいて抽出したもの を示す。各曲率値に対してしきい値thを設定して、th以上 の陰影を抽出。更にその後、陰影の連結要素数が 21 以上 のものを高 SUV 領域として抽出した。図 4 に示す直腸が んの症例では、各曲率値に対してのしきい値thは経験的に 設定した。(b)の第 1 曲率に基づく抽出では原画像で濃度値 が高い、臓器の形をもはっきり表現できていることが確認 できる。(c)の第 2 曲率での抽出は第 1 曲率のものと比較す ると、線状領域をより強く抽出している。(d)は孤立した球 状領域を強く抽出している。

今回は第3曲率の限局性に着目し、異常陰影候補である 高SUV領域の抽出には第3曲率を用いることにする。第3 曲率がth以上の陰影を抽出した後、陰影の要素数を調べ、 要素数が21以上のものを候補陰影として抽出する。ここ で、thは医師によって確定されたがんの領域が、はっきり と抽出されるよう、症例ごとに経験的に定めた。図5に異 常陰影候補を抽出した結果を示す。(a)は回盲部がんの症例、 (b)、(c)は直腸がんの症例、(d)は上行結腸がんの症例に対 して抽出を行ったものを示す、3次元的に抽出した候補陰 影を分類のために個々に色分けして示す。(a)及び(b)、(d)

(c)直腸がん症例(d)上行結腸がん症例図5 第3曲率に基づく異常陰影抽出

では、膀胱など、原画像では濃度値が高い領域である場合 でも異常陰影として抽出されていないことが確認できる。 しかし(d)では確定されたがんの領域における第3曲率の値 が小さく、thをその値に対応させることで異常陰影候補と して非常に多くの領域が抽出されるため、異常陰影候補の 更なる絞り込みを行う必要がある。

4. 定量解析および結果

第3曲率の値に基づいて抽出された各異常陰影候補の領域に対して、機能的な指標または、形態的な指標である以下の5つの特徴に基づいて、定量的に解析および評価を行う。

- (i) 平均 SUV
- (ii) 最大 SUV
- (iii) SUV の分散
- (iv) 球形度
- (v) 第3曲率の最大値

(i)及び(ii)、(iii)で示す機能的指標は、原画像が有する特 徴である。FDG の集積度に関係しており、単独であっても 悪性を顕著に示す指標であることが文献[4]において示され ている。(iv)と(v)で示す形態的指標は、各領域の形状に基 づくもので、がんに類似した形状を推定することが可能と なる。表1に回盲部がんの症例の各異常陰影候補の領域の

表1 各異常陰影領域の特徴

ラベル	(i)	(ii)	(iii)	(iv)	(v)
2	2.45	3.03	0.26	1.15	1.38
3	2.36	2.62	0.12	1.40	1.75
4	2.08	2.26	0.13	1.39	1.17
5	2.79	3.11	0.14	1.73	2.23
6	2.58	2.86	0.19	1.38	1.29
7	3.46	3.68	0.13	1.20	1.53
8	3.19	3.47	0.14	1.52	1.85
9	2.44	2.70	0.13	1.75	1.00
10	3.96	4.42	0.18	1.57	2.36
11	3.41	3.70	0.15	1.18	1.27
12	2.34	2.45	0.07	1.57	1.10
13	3.59	3.74	0.08	1.51	0.92
14	3.39	3.56	0.08	1.54	1.15
15	2.70	3.03	0.13	1.63	1.76
16	2.75	3.05	0.13	1.68	1.64
17	3.50	3.62	0.08	1.61	0.97
18	3.85	4.24	0.21	1.70	2.56
19	2.89	3.10	0.08	1.28	1.12
20	2.82	2.97	0.08	1.73	1.42
22	2.42	2.77	0.11	1.48	1.43
23	3.07	3.28	0.11	1.68	1.68
24	2.78	3.03	0.12	1.70	1.59
25	2.74	2.91	0.10	1.75	1.07
26	3.79	4.02	0.16	1.73	3.36
28	3.64	3.87	0.13	1.68	1.71
30	2.53	2.69	0.10	1.57	1.27
31	4.15	4.48	0.14	1.65	2.52
32	2.26	2.60	0.16	1.54	0.87
33	2.70	3.01	0.12	1.70	2.00
34	3.08	3.47	0.25	1.73	3.22
38	2.76	3.10	0.18	1.63	2.56
39	9.15	9.81	0.26	1.73	3.84
41	2.18	2.37	0.11	1.63	1.07
43	2.04	2.23	0.09	1.51	1.34
44	3.48	3.74	0.22	1.70	2.95

特徴を示す。ここでは、平均 SUV が 2.0 未満のラベルを除く。ここで、球形度は式(4)を用いて求められる。Vpは各領域の体積、Apはそれらの表面積である。

球形度 =
$$\frac{\pi^{\frac{1}{3}}(6V_p)^{\frac{2}{3}}}{A_p}$$
 (4)

ラベル 39 は、医師によって診断された回盲部がんの領 域である。このラベルの特徴は、高い平均 SUV 及び、最 大 SUV を持つことであると確認できる。他の症例でも同 様にがん領域では比較的高い SUV を持つことが確認でき た。そこで複数の指標を組み合わせることで、がんの領域 の特徴に類似した異常陰影候補の絞り込みを行う。表 1 に 示す複数の特徴の空間的な関係をグラフ化したもの図 6 に 示す。(a)は X 軸を平均 SUV、Y 軸を SUV の分散、Z 軸を 第 3 曲率の最大値とし、(b)は X 軸を SUV の分散、Y 軸を

(a)X:平均 SUV Y:SUV の分散 Z:第3 曲率の最大値

(b) X:SUV の分散 Y:球形度 Z:第3曲率の最大値 図6 回盲部がんの特徴分布図

(a)回盲部がん

(c)直腸がん(d)上行結腸がん図7がんに類似する特徴を持つ領域

球形度、Z 軸を第3 曲率の最大値としたグラフである。赤 色の丸で囲った点が、がんと確定された領域の特徴である。 それぞれの点の濃度はZ 軸の値の大きさに対応している。 (a)のグラフでは、がん領域の特徴が孤立していることが確 認できる。また、他のがん症例でも同様の指標の組み合わ せにおいて、がん領域の特徴が孤立していることが確認で きた。(b)のグラフでは、がんの領域の特徴に類似している 領域が複数存在することが確認できる。しかし、他のがん 症例では、がん領域の特徴が他の領域の特徴の中に紛れて いるような症例があるため、良い指標の組み合わせではな いと考えられる。

そこで(a)の指標である SUV の分散、領域の球形度、第3 曲率の最大値の3つの特徴の組み合わせを用いて、がん4 症例に対して、がんと確定された領域の特徴に空間的に近 い領域を、がんとよく似た特徴を持つ領域とし、絞り込み を行った結果を図7に示す。がんと確定された領域を赤色、 がんと似た特徴を持つ領域を青色で示す。(a)は肝臓、(b)は 腎臓、(c)は胸部、(d)は心筋付近の領域が、がんの類似領域 として絞り込むことができた。

5.おわりに

本研究では、医師によって大腸がんを確定された 4 症例 の FDG-PET 像の陰影に対し、異常陰影候補の抽出及び、 異常陰影の特徴解析を行い、がんによく似た特徴を持つ陰 影の絞り込みを行った。原画像の陰影に基づく異常領域抽 出には,PET 像に存在する背景バイアス成分のため,均一 なしきい値を設けることが困難である.そこで,FDG-PET 像が持つ曲率に注目することで,4 次元超曲面の曲率によ り,異常陰影候補の高 SUV 領域を抽出できることが確認 できた.また、これらの領域に対して、機能的、形態的な 指標を設け、定量解析を行った。その結果、医師による指 摘は無いが、がんによく似た特徴を持つ異常陰影を絞り込 むことができた。今後は、これらの絞り込んだ異常陰影が 良性か悪性か検査する必要がある。また、がん特有の特徴 の精度を高めるため、新たな指標の追加を行わなければな らない。

謝辞

本研究は JSPS 科研費 16K00411 の助成を受けたものである。

参考文献

- O.monga and S.Benayoun, "Using partial derivertives on 3D images to extract typical surface features", Computer Vision and Image Understanding, Vol.61, No.2, pp.172-189 (1995).
- [2] 平野靖, 清水昭伸, 長谷川純一, 鳥脇純一郎, "4 次元超局面の曲 率を用いた 3 次元濃淡画像に対する追跡型細線化の一手法", 電 子情報通信学会論文誌, Vol.J-83-D-II, No.1, pp126-136 (2000)
- [3] T.Tozaki, M.Senda, S.Sakamoto, "Analysis of FDG-PET Images for Cancer Diagnosis based on Anatomical Information of Human Body", Proc. Of 8th IASTED International Conference on Signal and Image Processing, pp.297-400 (2006)
- [4] T.Tozaki, M.Senda, "Extraction And Visualization of Structural Information Based on FDG-PET Images", Proc. Of 13th IASTED International Conference on Biomedical Engineering, 852, pp.013 (2017)