
High Parallelism Java Compiler With Queue Architecture

Li Qiang Wang,Yoshinage Tsutomu, Sowa Masahiro ∗†

1 Introduction

Increasing computational throughput can be
achieved via exploitation of potential parallelism.
One way of this realizing is to use a queue ma-
chine. A queue machine is a processing element
that uses a queue as the underlying mechanism for
the manipulation of operands. A compiler for the
Java programming language has been developed. A
new type of syntax tree optimum for queue exe-
cution model compiler-Queue Syntax Tree-is also
introduced , not only for queue java compiler. A
benchmark system to simulate and measure the per-
formance of java in queue execution model shows
that the average of parallelism of queue java ar-
chitecture is 2 to 3 times greater than that of to
stack java(normal java). It means that, in a ide-
alize parallel computing envirment, we can increse
java computational throughput 2 to 3 times.

2 Queue Execution Model(QEM))

The QEM uses a first−in, first−out (FIFO) queue
data structure as the underlying control mecha-
nism for the manipulation of operands and results.
A QEM machineis analogous to a Stack Execu-
tion Model(SEM) machine in that it has operations
in its instruction set which implicitly reference an
operand queue, just as a SEM machine has opera-
tions which implicitly reference an operand stack.
In a SEM machine, implicitly referenced operands
are retrieved (popped) from the top of an operand
stack and results are returned (pushed) backonto
the top of the operand stack. In a QEM machine,
operands are retrieved from the front of the queue
of operands and results are returned to the rear of
the queue of operands.
It is well known that the SEM machine instruc-

tion sequence corresponding to a given expression’s
parse tree can be obtained from the parse tree by
doing a post order traversal of it as shown in Fig-
ure.1.(a) . It will be shown that the SEM machine
instruction sequence can be obtained by traversing
the parse tree in a new way . This traversal method
is called a level order traversal. The following will
serve to illustrate how a level order traversal pro-
ceeds .

∗The Graduate School of Information Systems The Uni-
versity of Electro-Communications

†Advanced Distributed/Parallel Computer Systems Lab-
oratory

A level order traversal of the parse tree in Fig-
ure.1.(b) is performed by visiting the nodes of the
tree in the arrow order shown in Figure.1.(b). In-
formally, a level order traversal is done by visiting
the nodes of the parse tree from the deepest to the
shallowest levels and from left to right within each-
level. It was shown that a level order traversal pro-
duces a QEM instruction sequence.

+

× ÷

a b - e

c d

+

× ÷

a b - e

c d

(a) (b)

a× b+ (c− d)÷ e

Figure 1: Traversing of post-order and level-order

The QEM mechanism implemented in a pipelined
arithmetic/logic unit (ALU) is more efficient than
the SEM one−since the results of one operation
must be returned to the top of the s tack before
they can become the operands of the next opera-
tion.

3 The QEM Java

The QEM Java is an extension of the QEM and
Java Platform. It is composed of The Language
and Virtual Machine(VM) Specification. The syn-
tax and semantics of queue execution mode java
take no change with conventional java system re-
leased from Sun Microsystem, the difference only
occurs in the VM. As this well known, the conven-
tional Java VM uses SEM, the QEM mechanism
in a pipelined arithmetic/logic unit (ALU) is more
efficient than the SEM mechanism. It can exploit
more parallelism in fetch and execution than SEM
mechanism, so queue java VM which uses QEM, is
expected to have a better performance than conven-
tional Java.

4 Queue Syntax Tree For QEM

Queue Syntax Tree is a new type of syntax tree
optimum for QEM Compiler.
For SEM, the conventional syntax trees provide

enough information for it’s compiler. With the
lines between nodes in the parse tree shown in Fig-
ure.1.(a) , The SEM compiler can easily jump to

FIT（情報科学技術フォーラム）2002

135

B-24



the children and back to parent to produce instruc-
tions in SEM order. But the problem occurs when
we still use conventional syntax trees to deal with
the QEM order. The compiler, in order to find the
deepest and shallowest nodes, must traverse all the
tree at first, remember the position of the nodes,
then load the tree again to emit instructions. Be-
cause there is not connection information existing
between same-level nodes, finding same-level nodes
in instructions issue stage is very diffcult and its al-
gorithm becomes very complex and huge, also time-
consume.
Here we introduce Queue Syntax Tree. Its

characteristics are:

• the node means one or more instructions that
should been emitted in here

• the connection is still appeared between two
nodes

• the connection is not only between the parent
and child nodes and also brother and brother
nodes

Thus, the queue syntax of a × c + (c − d) ÷ e be-
comes as shown in Figure.2.(b). We can see that

+

× ÷

a b - e

c d

+

× ÷

a b - e

c d

(a) (b)
Figure 2: Queue syntax tree for a× c+ (c− d)÷ e

the sume of nodes in the expression are kept, the
connections of the brother-to-brother(same-level) is
created , the necessary connections among some
parent-to-child nodes are preserved, but some un-
useful connection are cut off. Under our experiment,
with the number of nodes in a expression increasing,
the consumed time of instruction emitting a queue
syntax tree can be reduced more comparing with
conventional syntax tree. The result of comare is
shown in Figure.3.

5 The Benchmark

We also developed a benchmark system to simu-
late and measure the performance. The benchmark
system has functions to calculate the maxinum-
parallelism, the average-parallelism and the sume
of instructions. It also can give of the transition
curve of queue-length and parallelism, it will help
us in future adjust source program to fit the opti-
mum status. With the benchmark system, we are
satisfied with the result: the average-parallelism of

Queue Java is 2 to 3 times greater than that of to
conventional Java.1

FFT Quick Sort
javac qjavac javac qjavac

compile time 1.73sec 2.47sec 1.66sec 1.98sec
max-memory consume 2773KB 4399KB 2877KB 4481KB

max-queue length 8 4
ave-queue length 2.46 1.24
max-parallelism 2 6 2 5
ave-parallelism 1.01 2.33 1.07 2.58

Table 1: Benchmark Result of qjavac comparing
javac in FFT and QuickSort Algorithm

6 Conclusions and Future Work

The work in this thesis has shown that a queue ma-
chine model is as powerful as a conventional stack
machine in terms of evaluating arbitrary expres-
sions. Furthermore, it was shown that instruction
sequences for the QEM has more parallelism than
SEM instruction sequences. An important observa-
tion is that a QEM machine is better than a SEM
machine at utilizing a pipelined arithmetic/logic
unit.
There still remain many unresolved compiler im-

plementation issues. The current compiler dose not
completely decompose any loop bodies and condi-
tionals for execution in separate contexts. In many
cases, this decomposition is excessive and actually
increases computational throughput. Work needs to
be done to develop a more intelligent partitioning
of the source program.
A queue machine processing element architecture

has been proposed and specified in some detail.
Work still remains to specify the control logic for
the processing element and possibly to implement a
prototype in silicon.

1 2 3 4 5 6 7 8 9 10 11
nodes(in a expression)

tim
e(sec)

traveling the same expression with

0

1

2

3

4

5

with queue syntax tree

with normal syntax tree

10,000,000 times

Figure 3: Result of emmiting time with conven-
tional syntax tree and queue sytax tree

1hardware and software envirment:PIII 450MHz, 128MB,
Windows2000

FIT（情報科学技術フォーラム）2002

136




