
Provably Correct Translation from OTS/CafeOBJ Specifications to Java Programs

Jittisak Senachak† Takahiro Seino† Kazuhiro Ogata‡ Kokichi Futatsugi†

1. Introduction
As the safety of software systems become more im-

portant recently, formal methods can help it to specify
and verify such properties before implementing them.
In practical, formal specifications and implementations
are developed separately, and the difference causes the
system fail. In this research, we have built a tool to
generate programs that meet the specifications from
the code of specification. Furthermore, we have also
verified that for any OTS/CafeOBJ specification, a
Java program which can be generated by the trans-
lator is an implementation of specification by writing
proof score[1] in CafeOBJ. That can guarantee the cor-
rectness of the translator and the generating code meet
the specification. Our approach is as follows:

1. We have designed notations (in CafeOBJ repre-
sentation) of both in OTS/CafeOBJ specifications
and Java programs called “Meta-OTS/CafeOBJ”
and “Meta-Java/CafeOBJ” respectively.

2. We have written a specification of the trans-
lation rules in CafeOBJ, which takes Meta-
OTS/CafeOBJ specifications and generates Meta-
Java/CafeOBJ programs.

3. We have specified and verified a Meta-
Java/CafeOBJ program by writing proof scores
in CafeOBJ.

2. Preliminaries
2.1 OTS/CafeOBJ Specification

OTS (Observational Transition System) [2] is one of
transition models defining the behavior of a system on
the changes of observation values (that is, system’s at-
tributes) after applying a sequence of transitions at any
state of system. Let call an OTS specification writ-
ten in CafeOBJ as OTS/CafeOBJ [2]. One of benefit
of writting a specification in this style is that we can
specify a system without knowing the detail of system
implementation [3].
2.2 Java Class Declaration

As specified in [5], a Java class defines:

• Field declarations describe class variables which
can be primitive or instance variables.

• Method declarations denote code that may be in-
voked by method invocation expressions. An in-
stance method is invoked with respect to some par-
ticular object that is an instance of the class type.

• Static initializers are blocks of executable code
that may be used to help to initialize a class.

• Constructors are similar to methods, but cannot
be invoked directly by a method call; they are used
to initialize new class instances.

An instance of class, we call it as an object. Like
other object-oriented programming language, a Java
object can hide the information (details of implemen-
tation) inside the class.

†Japan Advanced Institute of Science and Technology
‡NEC software Hokiriku, Ltd.

3. Translation Approach
3.1 How to specify the source and target lan-

guages
For an OTS/CafeOBJ specification, we have de-

signed a meta-language called “Meta-OTS/CafeOBJ”
based on OTS model. In an OTS model(anOTS), it
consists 3 sets of observations(O), transitions(T ) and
initial state(I). A Meta-OTS/CafeOBJ notation will
represent set of observation declarations as O, set of
action declarations with relevant equations as T and
set of initial values as I . In each action, there is an ef-
fective condition and list of effects showing the changes
of observation values when action takes effect. Expres-
sions and data types are all defined on the CafeOBJ
built-in INT and BOOL modules[1].

In the counterpart, a Java program, we also have
“Meta-Java/CafeOBJ”, which represents a program
retaining the structure of an OTS model. It has
3 sets of variables(V ) as O, methods(M) as T and
constructor(C) as I . Inside the methods, there
are 5 kinds of statements: value-assignment, object-
instantiation, if-then-else, method invocation, and
method return. Like “Meta-OTS/CafeOBJ”, the same
structure of expressions and data types will be applied.

3.2 How to specify the translation rules
In this part, we will show the translation rules

from a Meta-OTS/CafeOBJ module to a “Meta-
Java/CafeOBJ” class. It can be built based on the
structure of the specification as follows:

Category 1 A Meta-OTS/CafeOBJ module (existing
one hidden sort)

A hidden sort name translates into the class name.

A variable on a hidden sort represents an in-
ternal state of a system. It is corresponding
to ’this’ operator[5] in Java.

Category 2 Set of observation declarations

A signature of an observation translates into a Java
private variable declaration and variable access meth-
ods to retrieve(public) and assign(private) the obser-
vation value. All parameters of methods can be gener-
ated from the arity of each observation. For retrieval
method, the return type can be a corresponding type
to coarity of an observation.

Category 3 Set of action declarations

A signature of an action translates into a Java public
void method called ”action method”. All parameters of
methods can be generated from the arity of each action
and all observations for referencing inside its method.

Category 4 Set of initial values

An equation for setting an initial observation value
translates to be a value-assignment statement in the
class constructor

175

B-035

FIT2004（第3回情報科学技術フォーラム）



Category 5 A (conditional/unconditional) equation
in axiom declaration

An equation for an action translates to a statement of
the corresponding action method; for example,

cq balance(withdraw(A:Account, N:Int)) =
balance(A) - N
if(balance(A) > N) .

translates to

void withdraw(int N){
if(balance() > N)
setbalance(balance() - N);

//...for other withdrawal equations ...
}

4. Correctness of Translator
The correctness of translator can be shown by spec-

ifying and verifying the translation rules. We can say
that if there exists a simulation (refinement) relation
between an arbitrary Java generated code and its spec-
ification, it can be guaranteed that the translation rules
are sounded. Such relation can be considered as for any
Java context(precisely, state and values of referencing
symbols) the evaluation on that should give the same
result as on corresponding OTS context. As shown in
Fig. 1

Figure 1: Guarantee of correctness

4.1 How to specify the simulation relation
As stated above, we can show the simulation rela-

tion on the transitions of action and the evaluations of
observation values in both of specification and imple-
mentation. For a Meta-OTS/CafeOBJ module, there
are 2 operators. One, “observe”, is to observe a value
of any observation (with parameters as index) at any
state. Other one, “exec-ots”, is to execute a sequence
of execution at any state. It should specify in the both
cases of the effective condition is satisfied and not sat-
isfied (just ignored). In addition, we also need an eval-
uation operation of expressions, “evaluate”, on a state
and some referenced symbol. In the same phenomena,
the simulation of a Meta-Java/CafeOBJ program also
has “value”, “exec-java” and “jevaluate” operations.

The proof of existing a simulation, it can be shown
the predicate as below. We will prove by induction on
any sequence of actions for a general OTS/CafeOBJ
module.

exec-OTS(AnOTS,AL,OC)
R[o(i)]

exec-Java(tr(AnOTS),tr(AL),tr(OC))
where

AnOTS : An OTS/CafeOBJ specification

AL : A sequence of actions with action pa-
rameter

OC : OTS context consisting state S and
symbol-reference-list

R : Equality function of the evaluation of o(i)
on the OTS context and Java Context

o(i) : An observation o with indexing i, where
o is in set of observation declarations in
AnOTS

tr : Translation functions

5. Related Work
Previously, there is a research [4] concerning only

the signature part of CafeOBJ specification. Its tool
can generate Java template code of classes leaving for
programmer to full-filled the implementation inside a
method. For another one [3], it is a tool for discovering
an algebraic specification from a Java class using the
concept of object-oriented. In this research, we are
considering all code in OTS/CafeOBJ specification and
also showing that this translator can be proved.

6. Conclusion
In this work, we have made, specified, and verified

a collection of translation rules. The proof shows that
the generated code is an implementation of its specifi-
cation (in CafeOBJ representation). Also, we have al-
ready implemented a translator, and experience it with
some simple concrete specifications, such as, banking
account, cruise controller (as a finite state machine).

In this paper, the translator can accept only the sim-
ple data type; such as, integer and boolean. We plan
to study further more complicated abstract data type
which can be defined in CafeOBJ. Also, the translation
among several modules which has the inheritance rela-
tion is a good research topic for distributed systems.

References
[1] CafeOBJ official homepage:

http://www.ldl.jaist.ac.jp/cafeobj/

[2] K. Ogata and K. Futatsugi: Proof Scores in the
OTS/CafeOBJ Method. In Proc. of the 6th IFIP
WG6.1 International Conference on Formal Meth-
ods for Open Object-Based Distributed Systems
(FMOODS 2003), Springer, pp.170-184.

[3] J. Henkel and A. Diwan: A Tool for Writing and
Debugging Algebraic Specifications. In Proc. of
the 26th International Conference on Software En-
gineering (ICSE’04), IEEE, pp.449-458.

[4] C.Doungsa-ard and T. Suwannasart: An Auto-
matic Approach to Transform CafeOBJ Specifi-
cations to Java Template Code. In Proc. of the
International Conference on Software Engineering
Research and Practice (SERP’03), pp.171-176.

[5] J. Gosling, B. Joy and G. Steele: The Java(TM)
Language Specication. Sun Microsystems, 1996.

176

FIT2004（第3回情報科学技術フォーラム）




