レーダパルス識別への SVM の適用

Radar pulse recognition using SVM

川上 かおり† 田中 秀俊† 三石 彰純† Kaori Kawakami † Hidetoshi Tanaka † Akitoshi Mitsuishi †

1.まえがき

現状,レーダの機種をレーダパルスから識別する試みは既に行われている.例えば,パルスの間隔や搬送周波数など,レーダパルスに関するいくつかの特徴量を抽出し,それら特徴量の範囲の組をレーダの機種別辞書として用意しておくと,その辞書と照合することによって,完全ではないにせよ,識別を試みることができる.一方、同一機種のレーダの個体識別は,著者らの知る範囲では試みられていない.そこで,同一機種2機のパルスデータを多数用意して,識別が可能か否かをまず検討した.識別には音声認識の手法を採用することとし,簡易な隠れマルコフモデル(HMM)に基づいてパルスモデルを構築し識別を試みたところ,搬送周波数によっては識別可能との結果が得られた[1].本稿で述べる実験は,第一段階実験で識別不能となったケースに対する追試を目的としている.前述の簡易 HMM の各状態を対象として,サポートベクターマシン(SVM:Support Vector Machine)による識別を試みた.以下に,その手法と結果について述べる.

2. 隠れマルコフモデル

形式的には d 次 HMM, すなわち過去 d 個のデータが有限の数 の状態を確率的にとり, その次のデータはとった状態毎に固有の 確率で決まる状態遷移モデルとした.実質的には, d 個のデータ にウォルシュ変換を施して得られた w 次元ベクトルに対して, 1 次 HMM を構築する方法を採用した.ただし,現段階ではモデル 適合度に状態遷移確率を算入せず,出力分布のみを用いている[1].

3. サポートベクターマシン(SVM)

SVMにはカーネルという仕組みが存在し,その基本である線形 カーネルは,境界付近の学習データのみに注目し,2クラスの学 習データ間の最小幅(以下,マージン)を最大化する線形判別器 である.線形判別不能,すなわち分離不可能な学習データが存在 する場合には,そのデータへのペナルティを表す変数(以下,ス ラック変数)が導入される(ソフトマージン).さらに,非線形カ ーネルと呼ばれる,高次空間での線形判別境界を算出する仕組み により,適用可能な問題が増える.本稿の実験では,線形カーネ ルと,非線形カーネルの一つである多項式カーネルとを採用した.

4. 解析手法

4.1 前処理

前処理として「窓」を導入し,データをベクトル化する. 以下,時間単位をTuとする.レーダパルス信号に対し時 間幅 d [Tu]の「窓」を,全測定時間にわたって1[Tu]ずつ ずらすことにより,測定時間数程度の窓データを生成する. レーダパルス信号から局所的周期性を特徴として捉えるた めに,得られた各窓データについてw次までのウォルシュ 係数を求め,w次元の中間データを生成する.

4.2 状態分類

各レーダのデータから p₁本ずつパルスを選び,w次元の中間デ ータに対し,レーダの区別をせずに,部分母集団の平均,標準偏 差,及び混合比を求める.これらの値の算出には期待値最大化法 を用いている.

4.3 状態遷移列の算出

各中間データがどの状態に属するかを,帰属確率を比較 して決定する.この中間データの帰属状態の時系列から, 各パルスの状態遷移列が得られる.

4.4 SVM用状態別データの抽出

状態遷移列に基づき,各状態のデータを抽出する.各パルスを 構成するウォルシュ変換結果データの中から,個々の状態毎に, 属するウォルシュ変換結果データを抽出し,クラスを表すレーダ 識別子と組み合わせたものを SVM 用状態別データとする.最終 的には,2レーダの複数本のパルスに対するデータを1ファイル にまとめたものが SVM 用状態別データとなる.その際,2レー ダのウォルシュ変換結果データ数が等しくなるように調整する.

4.5 SVM による学習及び判別

SVM 用状態別データに対して学習を行い,判別境界を算出する. 算出された判別境界に基づき,判別対象データの判別を行う.

5.線形カーネルによる識別実験

5.1 データ生成処理

同一機種のレーダ2機について,まず[1]の実験で識別可能であった周波数Aにおいて解析実験を行った.約13万[Tu]の検波後の ビデオ信号データであるパルスデータを,各レーダ/各周波数で 32本ずつ用いた.16次12状態HMM(N=12, d=16)を想定し,ウ ォルシュ変換により8次元の中間データ(w=8)を作成した.状態分 類には,各レーダ/各周波数のパルス10本($p_1=10$)の計20パル スを対象とし,さらにそれらのウォルシュ変換結果データをSVM 用状態別データに変換した.

なお,今回使用したパルスデータは,個々のレーダの移動平均 に若干の差があり,この差が識別精度に大きく影響することが[1] より明らかになっている.そこで移動平均の差が直接的に影響し ないよう,正規化による補正(以下,レーダ間正規化)を行った 上で,ウォルシュ変換を施した.

5.2 学習 / 判別処理

SVM 用状態別データを各状態において学習後,自己識別テストを実施した.オープンソースのフリーソフトウェアであるSVM^{ight}[3]を用いた.状態数は12とし,パルス間の空状態とみなせる状態(状態IDが 5~7)は対象外とした.カーネルは線形カーネルを採用した.

事前にデフォルトのパラメータ設定における予備実験を行った ところ,全状態の正解率は49.67~52.00%の範囲で,平均正解率 は50.89%であった.そこで識別性能向上のため,以下に示すデ ータ加工やSVM^{light}が提供しているパラメータの変更を行った.

(1) SVM用状態別データの成分間正規化

SVM では学習データの各成分の振幅(絶対値の最大値)のばら つきが大きく影響すると考えられている.そこで,ウォルシュ変 換後のデータを加工して成分間の正規化を行った.具体的には,学 習対象となるデータの振幅の平均値を求め,平均振幅がほぼ均等 になるよう,成分毎に異なる定数を乗じて正規化を行った.

(2) スラック変数の導入(パラメータc)

SVM^{ight}のパラメータ c は , 線形分離が不可能な場合における , 最小化を行う目的関数のペナルティ項の係数 (すなわちスラック 変数の係数)の意味合いを持つ . パラメータ c を大きくすると,分 離不可能な学習データへのペナルティが厳しくなり (=修正コス トが大きくなる),学習データの正解率の向上が期待できる . しか しペナルティを厳しくするとマージンは狭くなる傾向にあるため , そのトレードオフの調整が重要となる .

5.3 判別結果(線形カーネル)

成分間正規化後、及びパラメータ c 導入後の各状態での正解率を 表 1に示す.なおパラメータ c は、ほぼ全状態において、実用時間内 で収束可能な最大値として、試行実験で得られた c=10⁻⁶を用いた.

表1:(1)成分間正規化 / (2)パラメータ *c* 導入後の 正解率[%]

状態	0	1	2	3	4	8	9	10	11
(1)	56.50	59.00	52.33	51.67	53.83	53.33	55.33	51.33	53.17
(1) + (2)	61.83	59.33	51.33	56.17	54.33	59.33	56.83	53.83	56.33

ほぼ全ての状態で成分間正規化及びパラメータ c の導入により 正解率が向上している.しかし,正規化のみの場合が 51.33 ~ 59.00[%](平均 54.05[%]),パラメータ c の導入で 51.33 ~ 61.83[%](平均 56.59[%])と,全体で 11[%]程度の向上であり, 識別可能とは言い難い結果であった.

6. 多項式カーネルによる識別実験

6.1 多項式カーネル

多項式カーネルは 式1のように定義される.今回の実験では, 線形カーネルの際に用いたパラメータ c と,式1を構成するパラ メータのうち,次元を表すパラメータ D のみを変更対象とし,そ の他のパラメータ r,s はデフォルト設定のままとした.また対象 とする状態は任意に抽出した状態(状態4)のみとした.

$$K(x_i, x_j) = (r + s x_i x_j)^D \qquad (\vec{\pm} 1)$$

6.2 判別結果 (多項式カーネル)

各状態で得られた最良の正解率 R[%]を表 2に示す.なおパラメ ータ c は,各状態において1~3時間程度で収束可能な最大値とし た¹.なお,成分間正規化データによる学習では,演算上の誤差が 生じたため,学習データ全体の振幅の平均値を使って,各成分の 最大振幅が10前後になるように正規化したデータを用いた.

表2: 多項式カーネルにおける正解率 R[%](状態4)

D	2	3	4	5	6	7	8	9
С	50	10	0.2	10-2	4×10^{-4}	10-5	10-6	10-8
R	62.5	70.3	72.3	76.0	77.8	79.5	83.5	80.2

 $c=10^{-6}$, D=8(8次元)の場合に最良の正解率 83.5[%]が得られ, また全状態でも 62.5~83.5[%],平均 75.3[%]の正解率となった. なお, D=10では上記時間内で収束不可能であった.以上より, 多項式カーネル導入による識別率向上の効果が明らかになった.

上述の結果は全て学習データを対象とした自己識別の結果であ り,「8次元多項式カーネル程度の個体差」があると言える.し かし,実際に識別できるかは今後の大きな課題である.本実験で の最良の結果が得られたパラメータの組み合わせを用いて,非学 習データを対象に実験を行ったところ,平均正解率は52.2[%]と なり,まだ非学習データに対して識別可能といえる結果は得られ ていない.また,そもそも今回のデータは工場内で採取した非常 にきれいなデータであって,フィールドで採取したものではない.

非学習データに対する正解率が大幅に低下した原因の一つとし て,パラメータ cを,収束可能な範囲内で最大にした点も考えら れる.cが大きくなるほど,ペナルティがきつくなり,学習デー タでの正解率が向上する反面,マージンが狭くなり,非学習デー タでの正解率低下につながった可能性が高い.その他にも多項式 カーネルの次元数や,カーネルそのものの適性等,識別性能に影 響する要因は多数考えられる.非学習データでの正解率向上のた めに,これらパラメータの調整,手法の改良などを今後検討する.

7.むすび

本報告では、レーダパルスを識別する一方法を提案し、評価結 果を示した.(1)パルスデータ分割(2)状態分類(3)状態 内での SVM による判別 の手順で、隠れマルコフモデルをベー スとした状態分類を行い、各状態内での SVM による判別精度を 検証した.実験から、SVM の線形カーネルによる正解率は 50[%] 前後と低く、各データの成分間の正規化や、スラック変数の導入に よって11[%]程度の向上は見られたが、 識別可能といえる結果は 得られなかった.次に多項式カーネル導入による実験では、学習 データを対象に、8次元の場合に最良の正解率 83.5[%]が得られ、 多項式カーネル導入の効果を示すことができた.しかし非学習デ ータでは、平均正解率は 52.2 [%]となり、識別可能といえる結果 は得られなかった.非学習データでの正解率低下に関して、スラ ック変数の設定方法、カーネルの次元数、カーネルの選択方法等、 多数の要因が考えられるため、今後は、これらのパラメータの調 整や手法の改良等を検討する予定である.

参考文献

- [1] 川上 他, "隠れマルコフモデルによるレーダパルス識別,"信学技報, SANE2001-118, pp.39-44, 2002.
- [2] C. Burges, "A Tutorial on Support Vector Machines for Pattern Recognition, "Data Mining and Knowledge Discovery, vol.2, no.2, pp. 121-167, 1998.
- [3] T.Joachims, "Making large-Scale SVM Learning Practical. Advances in Kernel Methods – Support Vector Learning, "B.Schölkopf, C.J.C.Burges, and A.J.Smola, edits, pp.169-184, Cambridge, MA, MIT Press, 1999.

¹各状態において,パラメータcが大きいほど正解率が向上する傾向が見られ,またc及びDが大きいほど実行時間は増大した.