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1 Introduction and Our Main Result

The Support Vector Machine (SVM in short) is a mod-
ern mechanism for two-class classification, regression, and
clustering problems. Since the present form of SVM was
proposed [5], SVMs have been used in various application
areas, and their classification power has been investigated
in depth from both experimental and theoretical points of
view. (See, e.g., [6].) An important feature is that their
way of working, by identifying the so-called support vec-
tors among the data, offers important contributions to a
number of problems related to Data Mining.

Here we consider using SVM for the two-class classi-
fication problem. A basic formulation for the problem is
presented as follows. Suppose that we are given a set of m
examples x;, 1 < ¢ < m, in an n-dimensional space, say
R"™. Each example x; is labeled by y; € {1, —1} denoting
the classification of the example. Then the SVM training
problem is essentially to solve the following optimization
problem (P1). (Here we follow [3] and use their formula-
tion. The problem can be restated with a single threshold
parameter as given in the original paper [5].)

Max Margin (P1)

min. [l ~ (65~ 0)

wrt. w=(wi,...,ws),04, and O_,

s.t. w-x, > 04, ify, =1,
w-x, < 0-, ify;, =—1.

In this formulation, it is assumed that the data set
is linearly separable; that is, a hyperplane separating the
two classes of examples exists. By the solution of (P1),
we mean the hyperplane that achieves the minimum cost.
Given a solution, its support vectors are the data points x;
for which, at the solution, the corresponding inequality is
tight; that is, w-x; =04 ify, =1, w-x;, = 0_ if y; = —1.

An important feature of SVM is that it is also ap-
plicable for the nonseparable case. More precisely, for
nonseparable data we can take two positions: (i) the case
where we consider that a hyperplane is too weak to be
a classifier for our given examples, and that we should
be able to fit them better nonlinearly; and (ii) the case
where we consider that there are some erroneous examples
or exceptions, i.e., “outliers”, which should be somehow
identified and allowed to be misclassified. Of course, it
would be better if we can use a “reasonable” nonlinear
classifier. Nevertheless, the second approach is important
as well if we suspect that outliers exist in a given set of
examples. The usability of SVM is due to the fact that
we can use both.
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In this paper, we focus on the second approach, and
discuss how to deal with outliers. A standard SVM solu-
tion to the case where some outliers exist is to relax the
constraints by introducing slack variables or “soft margin
error”. That is, we consider the following generalization
of the problem (P1), corresponding to the soft margin
hyperplane separation problem.

Max Soft Margin (P2)

min.  Slwl® -0 —6-)+ DY &

w.rt. w = (wi,..,wn),0+,0—,
and &1, ..., &m,

s.t. w-x; > 04 —&, ify =1,
w - &T; S 9—""51'7 ifyi:—l,
and & > 0.

For a given set X of examples, suppose we solve the
problem (P2) and obtain the optimal hyperplane. Then
an example in X is called an outlier if it is misclassified
with this hyperplane. On the other hand, examples other
than outliers are called normal examples. Notice that this
definition of outlier is relative both to the hypothesis class
and to the soft margin parameter D, which determines
the degree of influence of the outliers. In this paper, we
discuss a way to choose this parameter D appropriately.

Though important, there seems, at least as far as the
authors know, no systematic method for choosing the in-
fluence parameter D. The most standard way [6] is to try
several choices and use the one with the best performance
on the training set. Note that D should be fixed in ad-
vance; that is, when solving (P2) (in other words, when
training SVM), D is considered as a constant. But of
course, we may be able to revise D depending the result
of solving (P2). Thus, if there is a reasonable criterion
for D depending on the solution of (P2), then we would
at least have the following method to choose D: Solve
(P2) by revising D until some D satisfying the criterion
is obtained.

In this paper, we prove that D is small enough to sat-
isfy a certain reasonable condition (see the next section)
if and only if (P2) has a nontrivial solution. From this
result, we propose to check whether D is appropriate by
checking whether (P2) has a nontrivial solution.

2 Technical Discussion

Bennett and Bredensteiner [3] showed an alternative for-
mulation of (P2), giving us an intuitive geometric inter-
pretation of the influence parameter D. Our criterion
is based on their geometric interpretation. So we start
with a brief explanation of their formulation. For simpli-
fying our discussion, let us assume in the following that
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D = 1/k for some integer. (That is, we will consider only
those D’s that are the inverse 1/k of some integer k.)

Note that each example @; is a point in R"™. Intu-
itively, the objective of (P1) is to find two parallel hyper-
planes separating positive and negative points with the
largest distance. This distance can be regarded as the
distance between two sets of points, i.e., the sets of pos-
itive/negative points. Following the argument in [3], a
similar interpretation is given to the formulation (P2). In
the nonseparable case (i.e., in the formulation (P2)), we
would not consider each example; instead, we would con-
sider “composed examples” that are obtained as a center
of k examples, and then consider the distance between the
sets of positive/negative composed examples. Note that
the number k is defined by k = 1/D.

For a more precise statement, consider the set Z of
composed examples zr that is defined by
Tip + iy + -+ Ty,

k )

with some k distinct elements i, , @i,, ..., €;, of X with
the same label (ie., yi; = Yi, = -+ = y;,). That is,
a composed example is a mass center of all groups of k
homogeneously labeled initial data points. The label yr
of the composed example z; inherits its members’. In the
following, we use I for indexing elements of Z and their
labels. (For distinguishing from composed examples z7,
we will call x; an original example.)

By using the technique in [3], we can easily show that
(P2) is essentially equivalent to the following (P5). (See
the full version of this paper [2] for the precise meaning of
“equivalent”. We use (P5) in order to be consistent with

2].)

z] =

Max Margin for Composed Examples (P5)

1
Slwl? = G =)

min.

wrt. w=(wi,..,wn),N4+, and 7_,

s.t. w-zr > N+, ify]—l,
w-zr < no, ifyr=-1

In general, composed examples may not be separable.
But they are separable if k is sufficiently large (in other
words, if D = 1/k is sufficiently small). For example, in
the extreme case where k = my = m_ (where m4 and
m_ are respectively the number of positive and negative
examples), we have only one positive and one negative
composed example, which are clearly separable (unless
they are the same).

From this observation, one natural criterion for D (or
k) is the linear separability of composed examples. Note,
on the other hand, this criterion is rather difficult to use
when solving (P2). Our technical contribution is to prove
the following characterization theorem, thereby providing
a way to determine the linear separability of composed
examples. (See [2] for the proof.)

Theorem 2.1 Let X be any set X of examples, and for
any k, let Z be the set of composed examples made up from
k examples from X. Let (w™,07,0" &%) be a solution of
(P2) on X. Then ||w*|| > 0 (or, equivalently w* # 0) if
and only if k is large enough so that Z is linearly separable.
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From this theorem, if D is too large and the com-
posed examples are not linearly separable, then we know
it by obtaining the trivial answer w™* = 0 by solving (P2);
on the other hand, if D is small enough (i.e., k is large
enough) so that the composed examples are linearly sepa-
rable, then (P2) should have a nontrivial answer. That is,
we can determine whether D is appropriate by checking
whether (P2) has a nontrivial solution.

In the context of linear programming type classifica-
tion, Bennet and Mangasarian [4] proposed to use this
“linear separability” for choosing weights that are similar
to our influence parameter. There they also provide a way
to decide whether examples are linearly separable under
a given choice of weights. Here we prove that a similar
characterization theorem.

It should be mentioned that our characterization the-
orem, though its proof is not so difficult, is not immediate
from the equivalence between (P2) and (P5). This is be-
cause the equivalence is guaranteed when the composed
examples are linearly separable.

3 Concluding Remarks

Assume, as our working hypothesis, that the separabil-
ity of composed examples is an appropriate criterion for
choosing the influence parameter D. Then from our the-
orem one can easily think of an algorithmic way to deter-
mine D under this criterion. The simplest and straight-
forward way is to use the binary search method to find
the largest D (= 1/k) such that (P2) has a nontrivial so-
lution w™, i.e., w* # 0. For this, we need to solve (P2)
several times with different D, which may be computa-
tionally hard if there are huge number of examples. We
point out here that a random sampling approach proposed
in [1] could be used to solve this hardness.
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