
Addressable Procedures for Logic and Arithmetic Operations with DNA Strands

Akihiro Fujiwara† Ken’ichi Matsumoto† Wei Chen‡

1 Introduction

In recent works for high performance computing, com-
putation with DNA strands, that is, DNA computing, has
considerable attention as one of non-silicon based comput-
ings. In this paper, we consider addressable procedures
with DNA strands for primitive operations. The primi-
tive operations are used on a silicon based computer with
memory addressing, that is, each variable is stored in a
memory location whose size is a constant number of bits,
and an operation is executed for two memory locations
indicated by addresses. If the addressing feature is used
in DNA computing, we can execute different instructions
for different variables stored in DNA strands.

Using a theoretical model for DNA computing, we
first show representation of n binary numbers whose size
is m bits, and propose a basic procedure to assign values
for the representation. Since the procedure is applica-
ble to different binary numbers independently in parallel,
we can process the operation in O(1) lab steps for any
number of DNA strands. Next we propose a procedure
for logic operations. The procedure is applicable to any
boolean operation whose input and output are defined by
a truth table, and works simultaneously for any pair of
binary numbers in O(1) lab steps using O(mn) different
DNA strands. Finally we propose a procedure for addi-
tions of pairs of two binary numbers. The procedure uses
the methods for the Hamiltonian path problem[1] to com-
pute carry bits and works in O(1) lab steps using O(mn)
different DNA strands for O(n) additions of two m-bit
binary numbers.

2 Preliminaries

A set of DNA strands is a key component for DNA com-
puting, like a memory module used on a silicon based
computer. A single strand of DNA is a string of four dif-
ferent base nucleotides. Since any kind of single strands
can be synthesized using biological methods[2], each sin-
gle strand is used to represent a string over a finite al-
phabet Σ. A main concept used in DNA computing is
Watson-Click complementation. We define the alphabet
Σ = {σ0, σ1, . . . , σm−1, σ0, σ1, . . . , σm−1}, where the sym-
bols σi, σi are complements. Two single strands form a
double strand if the single strands are complements of each

other. A double strand with σi, σi is denoted by

[
σi

σi

]
.

Note that two single strands form a double strand if sub-
sequences of the two single strands are complements. The
single and double strands are stored in a test tube. For
example, T = {σ0σ1, σ1σ0} denotes a test tube T which

†Kyushu Institute of Technology.
‡Nanzan University.

stores two single strands σ0σ1, σ1σ0.
A lot of theoretical or practical computational mod-

els have been proposed for DNA computing. In this pa-
per, we assume a theoretical computation model based on
the RDNA model[4], which is an abstract mathematical
model for the performance of parallel DNA computation.
The model allows 8 primitive operations, which are Merge,
Copy, Detect, Separation, Selection, Cleavage, Annealing
and Denaturation. The 8 primitive operations are imple-
mented with a constant number of biological operations
for DNA strands[3]. In this paper, we assume the execu-
tion time of each primitive operation is O(1) lab step.

3 Bit representation and a basic procedure

We first describe representation of n binary num-
bers whose sizes are m bits. In the representa-
tion, one single strand corresponds to one bit of a
binary number. We define the alphabet Σ used in
the representation such that Σ = { A0, A1, . . . , An−1,
B0, B1, . . . , Bm−1, C0, C1,D0,D1, 1, 0, �, A0, A1, . . .,
An−1, B0, B1, . . . , Bm−1, C1, C2, D1, D2, 1, 0, �}. In the
above alphabet, A0, A1, . . . , An−1 denote addresses of bi-
nary numbers, and B0, B1, . . . , Bm−1 denote bit positions
in a binary number. C0, C1 and D0,D1 are specified sym-
bols cut by Cleavage. Symbols “0” and “1” are used to
denote values of bits.

Using the above alphabet, a value of a bit, whose
address and bit position are i and j, is represented by a
single strand Si,j such that,

Si,j = D1AiBjC0C1V D0,

where V = “0” if a value of the bit is 0, otherwise V=“1”.
We call each Si,j a memory strand, and use a set of O(mn)
memory strands to manipulate n binary numbers whose
sizes are m bits.

We propose a basic procedure, which is Value assign-
ment, for the representation. The Value assignment is a
procedure to set the same value to all memory strands in
a test tube. An input of the procedure is a test tube Tin

which contains memory strands such that,

Tin = {D1AiBjC0C1Vi,jD0 | 0 ≤ i ≤ n−1, 0 ≤ j ≤ m−1},

where Vi,j ∈ {0, 1}. An output is also a test tube Tout

such that,

Tout = {D1AiBjC0C1V
′D0 | 0 ≤ i ≤ n−1, 0 ≤ j ≤ m−1},

where V ′ ∈ {0, 1}. The procedure consists of two steps,
and a constant number of primitive operations are exe-
cuted in each step. Thus, the complexity of Value assign-
ment is O(1) lab steps and O(mn) DNA strands.

FIT（情報科学技術フォーラム）2002

31

A-16



4 Procedure for logic operations

We show a procedure which computes logic operations for
pairs of two memory strands in parallel. Let us consider
a logic operation whose inputs and outputs are Boolean
values Vin1 , Vin2 and Vout1 , Vout2 , respectively, and values
are defined by the following truth table.

Vin1 Vin2 Vout1 Vout2

0 0 α00 β00

0 1 α01 β01

1 0 α10 β10

1 1 α11 β11

Also let the following test tube Tin contain two memory
strands whose values are Vi,j and Vg,h as an input.

Tin = {D1AiBjC0C1Vi,jD0, D1AgBhC0C1Vg,hD0}

Then, an output of the procedure, for the logic operation
is a test tube Tout given as follows.

Tout =




{D1AiBjC0C1α00D0, D1AgBhC0C1β00D0}
(if Vi,j = Vg,h = 0)

{D1AiBjC0C1α01D0, D1AgBhC0C1β01D0}
(if Vi,j = 0, Vg,h = 1)

{D1AiBjC0C1α10D0, D1AgBhC0C1β10D0}
(if Vi,j = 1, Vg,h = 0)

{D1AiBjC0C1α11D0, D1AgBhC0C1β11D0}
(if Vi,j = Vg,h = 1)

The procedure consists of the following 3 steps.

1. Divide memory strands into two test tubes T0 and T1

according to outputs of the operation for a pair of two
memory strands. A memory strand whose output
value is 0 is stored in T0, and the other is stored in
T1.

2. Assign values to memory strands in each of test tubes
T0, T1.

3. Merge two test tubes.

The second and third steps are easily executed using
the Value assignment and Merge operations, respectively.
The first step is executed using the following logic strands
Li,j, which denotes a truth table of the logic operation for
memory strands Si,j , Sg,h.

Li,j,g,h =
{
α00� D0Si,j(0)Sg,h(0)D1β00�,

α01� D0Si,j(0)Sg,h(1)D1β01�,

α10� D0Si,j(1)Sg,h(0)D1β10�,

α11� D0Si,j(1)Sg,h(1)D1β11�
}

Since the procedure consists of a constant number of prim-
itive operations, we obtain the following theorem.

Theorem 1 We can compute O(n) logic operations for
two m-bit binary numbers in O(1) lab steps using O(mn)
different DNA strands. �

In addition, we can compute other simple operations, such
as NOT, SHIFT or COPY, with the same complexity us-
ing DNA strands because the procedure is applicable to
any pair of memory strands.

5 Procedure for arithmetic operations

We consider addition of two binary numbers
am−1am−2 . . . a0 and bm−1bm−2 . . . b0 which repre-
sent two numbers a, b such that a =

∑m−1

j=0
aj ∗ 2j

and b =
∑m−1

j=0
bj ∗ 2j . We assume the two

numbers a, b are stored in two sets of mem-
ory strands {Sia,m−1, Sia,m−2, . . . , Sia,0} and
{Sib,m−1, Sib,m−2, . . . , Sib,0}, respectively. Then,
the sum sm−1sm−2 . . . s0 of two numbers a, b is obtained
using a procedure consisting of the following four
steps. (Binary operators ⊕ and ∧ are XOR and AND
operations, respectively.)

1. For each j (0 ≤ j ≤ m − 1), compute xj = aj ⊕ bj ,
and yj = aj ∧ bj

2. For each j (0 ≤ j ≤ m − 1), compute pj = xj ∧ ¬yj .

3. For each j (1 ≤ j ≤ m − 1), set cj = 1 if yj = 1 or
there exists k (< j) such that pj−1 = pj−2 = . . . =
pk+1 = 1 and yk = 1, otherwise set cj = 0.

4. For each j (1 ≤ j ≤ m − 1), set sj = aj ⊕ cj−1.

The first, second and fourth steps of the above procedure
are easily implemented using a constant number of prim-
itive operations and logic procedures described in Section
4. To implement the third step, we use the methods for
the Hamiltonian path problem[1] to propagate carrys in
the third step. Since the third step consists of a constant
number of primitive operations and uses O(mn) different
DNA strands, we obtain the following theorem.

Theorem 2 We can compute O(n) additions of two m-
bit binary numbers in O(1) lab steps using O(mn) differ-
ent DNA strands. �

The procedure for additions are easily modified to be ap-
plied to subtractions. Thus, we can compute subtractions
with the same complexity using DNA strands.

6 Conclusions

In this paper, we proposed two procedures for logic and
arithmetic operations using DNA strands. Both proce-
dure works in O(1) lab steps using O(mn) different DNA
strands. Our result proposed in this paper are of theo-
retical consequence only. There are many biological prob-
lems which should be considered to realize the procedures.
However we believe that our theoretical results play an
important role in future DNA computing.

References

[1] L. M. Adleman. Molecular computation of solutions
to combinatorial problems. Science, 266:1021–1024,
1994.

[2] R. B. Merrifield. Solid phase peptide synthesis. I. The
syntesis of a tetrapeptide. Journal of the American
Chemical Society, 85:2149–2154, 1963.

[3] G. Pǎun, G. Rozeberg, and A. Salomaa. DNA com-
puting. Springer-Verlag, 1998.

[4] J. H. Reif. Parallel biomolecular computation: Models
and simulations. Algorithmica, 25(2/3):142–175, 1999.

FIT（情報科学技術フォーラム）2002

32




