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Persistence of Termination for Non-Overlapping Term Rewriting Systems
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Abstract

A property P is called persistent if for any many-
sorted term rewriting system R, R has the property
P if and only if term rewriting system ©(R), which
results from R by omitting its sort information, has the
property P. In this paper, we show that termination is
persistent for non-overlapping term rewriting systems
and we give the example as application of this result.
Furthermore we obtain that completeness is persistent
for non-overlapping term rewriting systems.

1 Introduction

Term rewriting systems (TRSs) can offer both flexi-
ble computing and effective reasoning with equations.
TRSs have been widely used as a model of functional
and logic programming languages and as a basis of the-
orem provers, symbolic computation, algebraic specifi-
cation and software verification [3, 4, 7, 10].

A rewrite system is called terminating (strongly nor-
malizing) if there exists no infinite reduction sequence.
In a confluent rewrite system, the normal form of a
given term is unique, that is, the final result does not
depend on the strategy in which the rewrite rules were
applied. Termination and confluence are the funda-
mental properties of TRSs. It is well-known that ter-
mination and confluence are undecidable for TRSs in
general [3, 5].

Zantema [13] introduced the notion of persistence as
follows: A property P is called persistent if for any
many-sorted TRS R, R has the property P if and only
if TRS O(R), which results from R by omitting its sort
information, has the property P. Zantema [13] showed
that termination is persistent for TRSs without col-
lapsing or duplicating rules. However termination is
not persistent in general [13]. The basic counterexam-
ple from Toyama [12] leads to the following sorted TRS
R:

{

where the set of sorts S = {a, 3} and the function
symbols and variables are defined as follows:

fraxaxa—a,0:a,1l:a,9:8x8—=06,2:q,
y:06,z:0.

The sorted TRS R is terminating. Let © be a sort
elimination function. Then TRS ©(R), which results
from R by omitting its sort information, is not termi-
nating.

f(0,1,2) = f(z,z,)
9(y,2) =y
9(y,2) =2

R
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is an infinite reduction in ©(R). In each step the con-
tracted redex is underlined. Aoto and Toyama showed
the persistence of confluence [1]. Ohsaki and Mid-
deldorp [11] studied the persistence of termination,
acyclicity and non-loopingness on equational many-
sorted TRSs. Aoto proved that the persistence of ter-
mina[ti]on for TRSs in which all variables are of the same
sort [2].

In this paper, we show the persistence of termination
for non-overlapping TRSs and we give the example as
application of this result. Zantema’s result can not
be applied to our example. As a result we obtain the
persistence of completeness for non-overlapping TRSs.

In section 2, many-sorted TRS is formulated and
well-sortedness is characterized in section 3. First,
we show the persistence of weak innermost normal-
ization. Next, we show the persistence of termina-
tion for non-overlapping TRSs and we give the exam-
ple as an application of this result in section 4. Fur-
thermore, we obtain the persistence of completeness for
non-overlapping TRSs.

2 Preliminaries

: W]e mainly follow basic definitions in the literature
1,7

2.1 Sorted term rewriting systems

In this subsection, we introduce the basic notions of
sorted term rewriting systems. Usual term rewriting
systems [3] are considered as special cases of sorted
term rewriting systems.

Let S be a set of sorts and ) be a set of countably in-
finite sorted variables. We assume that there are count-
ably infinite variables of sort « for each sort a € S. Let
F be a set of sorted function symbols. We assume that
each sorted function symbol f € F is given with the
sorts of its arguments and the sort of its value, all of
which are included in §. We write f:a; X ... X a, —
B if and only if f takes n arguments of sorts ay,...,ay
respectively to a value of sort 3. Function symbol of
with no arguments is constant.

The set T(F,V) = Uges T(F, V) of all sorted
terms built from F and V is defined as follows: (1)
V* C T(F, V)Y (2) frioq X ... X ap = @, t; €
T(F, V)% (i = 1,...,n) then f(t1,...,tn) € T(F,V)°.
Here T(F,V)?® denotes the set of all sorted terms of
sort .

We write t : « if ¢ is of sort a. V(t) denotes the set
of all variables in t. T(F,V)® and T(F,V) are abbre-
viated as 7% and T, respectively. Let 0% be a special
constant (hole) of sort a. Elements of 7(FU {0 | a €
S},V) are called contexts over T(F,V). We write C:ay
X ... X a, = «if and only if the sort of context C' is «
and it has n holes Ot ... . O% . If C:a; X ... X @, —
a and t;:a; (0 = 1,...,n) then Clty,...,tn] denotes the
term obtained from C by replacing holes with ¢1,... ¢,
from left to right. A context that contains precisely
one hole is denoted by C[]. A term ¢ is said to be a
subterm of s if and only if s = C[t] for some context C'.
A substitution 6 is a mapping from ) to 7 such that
x € V* implies f(z) € T*. A substitution over terms
is defined as a homomorphic extension. 6(t) is usually
written as t6. A sorted rewrite rule on T is a pair [ - r
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such that I € V, V(r) C V(I), sorted terms [ and r have
the same sort. A sorted term rewriting system (STRS,
for short) is a pair (F,R) where F is a set of sorted
function symbols and R is a set of sorted rewrite rules
on T(F,V). (F,R) is often abbreviated as R and in
that case F is defined to be the set of function symbols
that appear in R.

Given a STRS R, a sorted term s is reduced to a
sorted term t (s —>Rt in symbol) when s = C[l6] and
t = C[rf] for some rewrite rule l - r € R, context C
and substitution 8. We call s>t a rewrite step or
reduction from s to t of R. 16 is called redex of this
rewrite step. One can easily check that sorted terms s
and t have the same sort whenever s =5 t.

The transitive reflexive closure of — is denoted by
—%. Terms t; and t, are joinable if there exists some
term ¢’ such that t; =% t' <% t2. A term ¢ is confluent
if for any terms ¢; and ts, t; and ¢y are joinable when-
ever t; <5 t—3to. A STRS R is confluent if every
term is confluent to —x. A term ¢ is a normal form if
there is no term ¢’ such that t > t'. A term ¢ is ter-
minating (strongly normalizing) if there is no infinite
reduction sequence starting from term ¢t. A STRS R
is terminating if every term is terminating to —p. A
STRS R is weakly innermost normalizing if every term
has a normal form which can be reached by an inner-
most reduction. In an innermost reduction a redex may
only be contracted if it contains no proper subredexes.
In that case we write s =z t. A STRS R is complete
if R is confluent and termma’cmg Every terminating
STRS is weakly innermost normalizing.

A rewrite rule | —r is a collapsing rule if r is a vari-
able. A rewrite rule [ — r is a duplicating rule if some
variable has more occurrences in r than in [. Let l; = r;
and Iy =72 be renamed versions of rewrite rules in
a STRS R such that they have no variables in com-
mon. Suppose [y = C[t] with ¢t ¢ V such that t and
l5 are unifiable, i.e. t§ = [50 for a most general uni-
fier 6. The term 1,6 = C[l5]6 is subject to the rewrite
steps 110 = r10 and 1160 = C[r2]6. Then the pair of
reducts (C[ro]6,r16) is called a critical pair of R. A
STRS R is said to be non-overlapping if there is no
critical pair between rules of R.

When S = {*}, an STRS is called a term rewriting
system (TRS, for short). Given an arbitrary STRS R,
by identifying each sort with %, we obviously obtain a
TRS O(R) - called the underlying TRS of R.

2.2 Sorting of term rewriting systems

Aoto and Toyama, [1] defined the notion of sort at-
tachment and formulated the notion of persistence us-
ing sort attachment. We mainly follow basic definitions
in [1] in this subsection.

Let F and V be sets of function symbols and vari-
ables, respectively, on a trivial set {* i, of sorts. Terms
built from this language are called unsorted terms. Let
S be another set of sorts. A sort attachment T on § is
a mapping from FUY to the set §* of finite sequences
of elements from & such that 7(z) € S for any z € V
and 7(f) € 8™*! for any n-ary function symbol f € F.
We write 7(f) = a1 X ... X ap, = 5. Without loss of
generality we assume that there are countably infinite
variables z with 7(z) = « for each a € S. The set of
T-sorted function symbols from F is denoted by F7.

A term ¢ is said to be well-sorted under 7 with sort
a if t : a is derivable in the following rules: (1) 7(z)
a implies z:a, (2) 7(f) = a1 X ... X a, = B, t1:0q,. ..,
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tniq, imply f(t1,...,t,):0.

The set of well-sorted terms under 7 is denoted by
T7,ie. T7 ={t € T|t: afor some a € S}. Clearly,
T7™ C 7. For a context C, we write C:ay X ... X ay,
— Bif C[O*,... ,0%]:8 is derivable by rules ( ), (2)
with an additional rule: (3)a € S implies O : a.

Let R be a TRS. A sort attachment 7 is said to be
consistent with R if for any rewrite rule l >r € R, [
and r are well-sorted under 7 with the same sort. Note
that R™ acts on 77, i.e. well-sorted terms s,t € 7"
whenever s -5+ t; and that for any s,t € 77, s 55 t
if and only if s —5- t.

From a given TRS R and a sort attachment 7 con-
sistent with R, by regarding each function symbol f to
be of sort 7(f) and each variable x to be of sort 7(x),
we get a STRS R™ - called a STRS induced from R
and 7.

Using the sort attachment, persistence can be alter-
natively formulated as follows. It is clear that defini-
tion of Zantema [13] and the following definition are
equivalent.

Definition 2.1 A property P is called persistent if for
any TRS R and any sort attachment 7 that is consis-
tent with R the following property holds:

R" has the property P < R has the property P.

We consider the persistent property for TRSs using
definition 2.1 in this paper instead of Zantema’s defi-
nition. From now on, we assume that a set S of sorts,
a TRS R are given. Then an attachment 7 on S that
is consistent with R is fixed.

3 Characterizations of well-sortedness

In this section, we give a characterization of well-
sortedness.

Definition 3.1 The top sort (under 7) of an unsorted
term ¢ is defined as follows:

o top(t) =7(t)ift € V.
otop() Bift = f(t1,...,tn) with 7(f) = aq X
X ap = .

Definition 3.2 Let t = C[t1,...,t,] (n > 0) be an
unsorted terms with C[,...,] # O. We write t =

Clt1, ... ,t,] if and only if
(1) C:a1 X...xay = B is a context that is well-sorted
under 7.

(2) top(t;) # a; fori =1,.

The tq,...,t, are said to be the principal subterms of
t.

We denote ¢t = C{(t1,...,t,)) if either t =
Clt1,...,tyJ or C = O and t; € {t1,...,tn}

Definition 3.3 Let ¢t be an unsorted term. The rank
of t is defined by

e rank(t) = 1 if ¢ is well-sorted term.

o rank(t) = 1+maz{rank(t1),...
Clt,--- ,ta]-

,rank(t,)} if t =
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We consider the example of top sort, principal sub-
term and rank of an unsorted term.

Example 3.4 Let F = {f,9,h,A,B}, S ={0,1} and
T={f:0x0>1,9g:1-0,h:0x1x1—-1,4:0,B:
0

We consider the unsorted term f (g (A), h (z,B,B)).

op(f(g(A),
0—1.
)=

,h(z, B,
I

o~

h(z,B,B))) = 1 because of 7(f) = 0

B)) = C[ A, h(z,B,B)] where
(0),0). The pr1nc1pa1 subterms of
are A and h(z, B, B).

Q

O
F(g(A),h(z, B,

$

4 Persistence of termination for non-
overlapping TRSs

In this section, we show the persistence of termina-
tion for non-overlapping TRSs. It is main theorem in
this paper. First, we show the persistence of weak in-
nermost normalization. Next, we show the persistence
of termination for non-overlapping TRSs. Furthermore
we give the example as application of our main result.

Let s1,...,s, and t1, ..., t, be terms. We write
(31, ., 8n) &« (t1,...,t,) if and only if for any 1 <

,J <n, s; = sj 1mp11es t; = t;. Moreover, we write
(s1,. .,sn) (t1,.. )1fa,ndonlyif(sl,...,sn)
o« (t1,...,t, ) and (tl,... Jtn) o (81,.-. ,8n ).

The following theorem was proved by Gramlich in

[6].

Theorem 4.1 2[6] ) Let R be a non-overlapping TRS.
Then, R is weakly innermost normalizing if and only
if R is terminating.

Lemma 4.2 Let R™ be a non-overlapping STRS.
Then, R™ is weakly innermost normalizing if and only
if R7 is terminating.

Proof. For any well-sorted terms s,t € 77, s 9p-t
if and only if s +x t. By theorem 4.1, R" is weakly
innermost normalizing if and only if R” is terminating.
O

We give the proof of persistence of weak innermost
normalization.

Theorem 4.3 Weak innermost normalization is a
persistent property of TRSs.

Proof. Let R be a TRS. We show that R™ is weakly
innermost normalizing if and only if R is weakly inner-
most normalizing.

o (if)-part: For well-sorted term s,t € T7, s = ¢
if and only if s - t. Hence, every well-sorted
term has a normal form which can be reached by
an innermost reduction.

e (only if)-part: We will show by induction on
rank(t) that every unsorted term ¢ has a nor-
mal form which can be reached by an innermost
reduction with respect to R. If rank(t) = 1
then the result follows from the assumption that
R is weakly innermost normalizing. Let t =
Clti,-.. ,ts)- Applying the induction hypothesis
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to t1,. ..ty yields normal forms ¢,. .
tj —ip t; for j =1, ..., n

.,t, such that
We clearly have

C[t t.] = C'[s1,--.,sm] for some context
C[,... ,]al X ... X @y — a and normal forms
$1,..-,8m- Choose fresh variables z; € V% for 4

.,m such that (z1,...,2,) 00 (s1,...,8m)-
Because rank(C'[z1, ... ,Zm]) = 1, the well-sorted
term C'[z1,...,%,] has a normal form which
can be reached by an innermost reduction, say
C'l@1,. .. ,&m]) =if C*[wir,... , 7). Hence, we
have the following innermost reduction sequence:
t _)z:;g C’[[sl,.. .,Sm]l _)1'72 c* ((551,. .. ,Sip)) =t
Since C*, s;1, ..., Sip are normal forms which can
be reached by an innermost reduction with respect
to R, t' is normal form which can be reached by an
innermost reduction with respect to R. We con-
clude that every unsorted term has a normal form
which can be reached by an innermost reduction
with respect to R. O

We obtain the main theorem in this paper from the-
orem 4.1, lemma 4.2 and theorem 4.3.

Theorem 4.4 Termination is a persistent property of
non-overlapping TRSs.

Proof. Let R be a non-overlapping TRS. We have to
show that R” is terminating if and only if R is termi-
nating. By theorem 4.1, R is weakly innermost normal-
izing if and only if R is terminating. By theorem 4.3,
R" is weakly innermost normalizing if and only if R
is weakly innermost normalizing. Hence, R" is weakly
innermost normalizing if and only if R is terminating.
Since TRS R is non-overlapping, so is STRS R”. B

lemma 4.2, R” is weakly innermost normalizing if and
only if R7 is terminating. Therefore, R" is terminating
if and only if R is terminating. O

Example 4.5 We show that the following non-
overlapping TRS R is terminating using theorem 4.4.
To show the termination of the following TRS directly
seems difficult from known results (E.g. recursive path
ordering [5]). Also, we can not use the modularity re-
sults for composable systems [9, 10] , hierarchical com-
bination and hierarchical combination with common
subsystem [8, 10].

9(e(4, B),d(z, B)
—g(e(4,B),d(z,4)) (rl)
I(d(z,C), g(z,d(y, C)))
R = —1(d(z,D),g(z,d(y, C))) (r2)
d(z,D)—z (r3)
d(z,E) —e(z,z) (rd)

Zantema’s result [13] that termination is persistent
for TRSs without collapsing or duplicating rules can
not be applied, because the above TRS contains both
collapsing rule (r3) and duplicating rule (r4). However,
we can show the termination of the above TRS using
our results in this paper.

Let S = {0,1,2}. We give the following sort attach-
ment 7.
g:0x0—=1
I:0x1—2
T=<¢ d:0x0—=0
e:0x0—>0
A:0,B:0,C:0,D:0,E:0
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Any well-sorted term in 7°, 7' and 772 is terminat-
ing, i.e. any well-sorted term in 77 is terminating. We
consider the following cases:

et € 7% Then (r3), (r4) and (r5) are the only
applicable rules. A TRS {(r3), (r4), (7'5)£l is ter-
minating using recursive path ordering. Hence, ¢
is terminating.

e t € 7. Then (r1), (r3), (r4) and (r5) are the only
applicable rules. For any proper subterm s of ¢,
top(s) = 0. Since the above case, s is terminating.
Since top(t) = 1, (r1) is the only applicable rule to
root, position of term ¢. Hence, t is terminating.

e t € 72. Then (rl), (r2), (r3), (r4) and (r5) are
the applicable rules. For any proper subterm s of
t, top(s) = 0 or top(s) = 1. Since the above two
cases, s is terminating. Since top(t) = 2, (r2) is
the only applicable rule to root position of term ¢.
Hence, t is terminating.

Then, STRS R" is terminating. Since R” is non-
overlapping TRS and theorem 4.4, TRS R is terminat-
ing.

Furthermore we obtain the persistence of complete-
ness for non-overlapping TRSs.

The following theorem was given by Aoto and
Toyama [1].

Theorem 4.6 ([1]) Confluence is a persistent prop-
erty of TRSs.

Since a complete TRS is confluent and terminating,
we obtain the following corollary from theorem 4.4 and
theorem 4.6.

Corollary 4.7 Completeness is a persistent property
of non-overlapping TRSs.

5 Conclusion

In this paper, we have discussed the persistence of
termination for non-overlapping TRSs. We have given
our main results in the following.

First, we have shown the persistence of weak inner-
most normalization. Next, we have shown the persis-
tence of termination for non-overlapping TRSs and we
have given the example as application of our main re-
sult. Furthermore we have obtained the persistence of
completeness for non-overlapping TRSs.
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