A－018

Balanced $\left(C_{4}, C_{7}\right)$－2t－Foil Decomposition Algorithm of Complete Graphs

Kazuhiko Ushio
Department of Informatics
Faculty of Science and Technology
Kinki University
ushio＠info．kindai．ac．jp

1．Introduction

Let K_{n} denote the complete graph of n vertices． Let C_{4} and C_{7} be the 4 －cycle and the 7 －cycle， respectively．The $\left(C_{4}, C_{7}\right)$－ $2 t$－foil is a graph of t edge－disjoint C_{4}＇s and t edge－disjoint C_{7}＇s with a common vertex and the common vertex is called the center of the $\left(C_{4}, C_{7}\right)$－ $2 t$－foil．In par－ ticular，the $\left(C_{4}, C_{7}\right)$－2－foil is called the $\left(C_{4}, C_{7}\right)$－ bowtie．When K_{n} is decomposed into edge－ disjoint sum of $\left(C_{4}, C_{7}\right)$－2t－foils，we say that K_{n} has a $\left(C_{4}, C_{7}\right)$－2t－foil decomposition．Moreover， when every vertex of K_{n} appears in the same number of $\left(C_{4}, C_{7}\right)$－ $2 t$－foils，we say that K_{n} has a balanced $\left(C_{4}, C_{7}\right)$－2t－foil decomposition and this number is called the replication number．
Note that $\left(C_{4}, C_{7}\right)$－ $2 t$－foil has $9 t+1$ vertices and $11 t$ edges．

It is a well－known result that K_{n} has a C_{3} de－ composition if and only if $n \equiv 1$ or $3(\bmod$ 6）．This decomposition is known as a Steiner triple system．See Colbourn and Rosa［2］and Wallis［15］．Horák and Rosa［3］proved that K_{n} has a $\left(C_{3}, C_{3}\right)$－bowtie decomposition if and only if $n \equiv 1$ or $9(\bmod 12)$ ．This decomposition is known as a bowtie system．
In this sense，our balanced $\left(C_{4}, C_{7}\right)$－ $2 t$－foil de－ composition of K_{n} is to be known as a balanced $\left(C_{4}, C_{7}\right)$－2t－foil system．

2．Balanced $\left(C_{4}, C_{7}\right)$－2t－foil decomposi－ tion of K_{n}

Theorem．K_{n} has a balanced $\left(C_{4}, C_{7}\right)$－ $2 t$－foil decomposition if and only if $n \equiv 1(\bmod 22 t)$ ．

Proof．（Necessity）Suppose that K_{n} has a balanced $\left(C_{4}, C_{7}\right)$－2t－foil decomposition．Let b
be the number of $\left(C_{4}, C_{7}\right)$－ $2 t$－foils and r be the replication number．Then $b=n(n-1) / 22 t$ and $r=(9 t+1)(n-1) / 22 t$ ．Among $r\left(C_{4}, C_{7}\right)-2 t-$ foils having a vertex v of K_{n} ，let r_{1} and r_{2} be the numbers of（ C_{4}, C_{7} ）－2t－foils in which v is the center and v is not the center，respectively．Then $r_{1}+r_{2}=r$ ．Counting the number of vertices adjacent to $v, 4 t r_{1}+2 r_{2}=n-1$ ．From these relations，$r_{1}=(n-1) / 22 t$ and $r_{2}=9(n-1) / 22$ ． Therefore，$n \equiv 1(\bmod 22 t)$ is necessary．
（Sufficiency）Put $n=22 s t+1, T=s t$ ．Then $n=22 T+1$ ．
When $T=1$ ，construct a balanced $\left(C_{4}, C_{7}\right)$－2－ foil decomposition of K_{23} as follows：
$B_{i}=\{(i, i+5, i+13, i+6),(i, i+1, i+3, i+$ $7, i+10, i+20, i+9)\}(i=1,2, \ldots, 23)$ ．
First，consider a sequence $S: g_{1}, g_{2}, g_{3}, \ldots, g_{T}$ ．
When $T=2$ ，put $S: g_{1}, g_{2}$ with $g_{1}=21, g_{2}=$ 19.

When $T=3$ ，put $S: g_{1}, g_{2}, g_{3}$ with $g_{1}=28, g_{2}=$ $30, g_{3}=29$ ．
When $T=4$ ，put $S: g_{1}, g_{2}, g_{3}, g_{4}$ with $g_{1}=$ $39, g_{2}=41, g_{3}=38, g_{4}=37$ ．
When $T=5$ ，put $S: g_{1}, g_{2}, g_{3}, g_{4}, g_{5}$ with $g_{1}=51, g_{2}=47, g_{3}=49, g_{4}=48, g_{5}=46$ ．
When $T \equiv 2(\bmod 4), T \geq 6$ ，put $T=$ $4 p+2$ and $S: g_{1}, g_{2}, g_{3}, \ldots, g_{4 p+2}$ with $S_{1}:$ $g_{1}, g_{3}, g_{5}, \ldots, g_{2 p-1}, S_{2}: g_{2}, g_{4}, g_{6}, \ldots, g_{2 p}, S_{3}:$ $g_{2 p+1}, S_{4}: g_{2 p+2}, g_{2 p+3}, g_{2 p+4}, \ldots, g_{4 p+2}$ such as $S_{1}: 10 T-2,10 T-4,10 T-6, \ldots, 10 T-2 p$ $S_{2}: 10 T+1,10 T-1,10 T-3, \ldots, 10 T-2 p+3$ $S_{3}: 10 T-2 p+1 \quad S_{4}: 10 T-2 p-1,10 T-2 p-$ $2,10 T-2 p-3, \ldots, 9 T+1$ ．
When $T \equiv 3(\bmod 4), T \geq 7$ ，put $T=4 p+7$ and $S: g_{1}, g_{2}, g_{3}, \ldots, g_{4 p+7}$ with $S_{1}: g_{1}, g_{2 p+3}, g_{4 p+5}, g_{4 p+6}, g_{4 p+7}, S_{2}$ ： $g_{2}, g_{3}, g_{4}, \ldots, g_{2 p+2}$
，$S_{3}: g_{2 p+4}, g_{2 p+6}, g_{2 p+8}, \ldots, g_{4 p+4}, S_{4}$ ： $g_{2 p+5}, g_{2 p+7}, g_{2 p+9}, \ldots, g_{4 p+3}$ such as $S_{1}: 10 T+$
$1,10 T-2 p-3,9 T+5,9 T+3,9 T+1 \quad S_{2}:$ $10 T-1,10 T-2,10 T-3, \ldots, 10 T-2 p-1 \quad S_{3}:$ $10 T-2 p-5,10 T-2 p-7,10 T-2 p-9, \ldots, 9 T+2$ $S_{4}: 10 T-2 p-2,10 T-2 p-4,10 T-2 p-$ $6, \ldots, 9 T+7$ ．
When $T \equiv 0(\bmod 4), T \geq 8$ ，put $T=$ $4 p+4$ and $S: g_{1}, g_{2}, g_{3}, \ldots, g_{4 p+4}$ with S_{1} ： $g_{1}, g_{3}, g_{5}, \ldots, g_{2 p-1}, S_{2}: g_{2}, g_{4}, g_{6}, \ldots, g_{2 p+2}, S_{3}$ ： $g_{2 p+1}, S_{4}: g_{2 p+3}, g_{2 p+4}, g_{2 p+5}, \ldots, g_{4 p+4}$ such as $S_{1}: 10 T-2,10 T-4,10 T-6, \ldots, 10 T-2 p$ $S_{2}: 10 T+1,10 T-1,10 T-3, \ldots, 10 T-2 p+1$ $S_{3}: 10 T-2 p-1 \quad S_{4}: 10 T-2 p-2,10 T-2 p-$ $3,10 T-2 p-4, \ldots, 9 T+1$ ．
When $T \equiv 1(\bmod 4), T \geq 9$ ，put $T=4 p+9$ and $S: g_{1}, g_{2}, g_{3}, \ldots, g_{4 p+9}$ with $S_{1}: g_{1}, g_{2 p+5}, g_{4 p+7}, g_{4 p+8}, g_{4 p+9}, S_{2}$ ： $g_{2}, g_{3}, g_{4}, \ldots, g_{2 p+3}$
，$S_{3}: g_{2 p+4}, g_{2 p+6}, g_{2 p+8}, \ldots, g_{4 p+6}, S_{4}:$ $g_{2 p+7}, g_{2 p+9}, g_{2 p+11}, \ldots, g_{4 p+5}$ such as $S_{1}: 10 T+$ $1,10 T-2 p-3,9 T+5,9 T+3,9 T+1 \quad S_{2}:$ $10 T-1,10 T-2,10 T-3, \ldots, 10 T-2 p-2 \quad S_{3}:$ $10 T-2 p-5,10 T-2 p-7,10 T-2 p-9, \ldots, 9 T+2$ $S_{4}: 10 T-2 p-4,10 T-2 p-6,10 T-2 p-$ $8, \ldots, 9 T+7$ ．
Next，construct $n\left(C_{4}, C_{7}\right)$－ $2 T$－foils as follows： $B_{i}=\{(i, i+T+1, i+15 T+2, i+2 T+$ 1），$(i, i+1, i+3 T+2, i+10 T+2, i+15 T+$ $\left.\left.3, i+20 T+3, i+g_{1}\right)\right\} \cup\{(i, i+T+2, i+$ $15 T+4, i+2 T+2),(i, i+2, i+3 T+4, i+$ $\left.\left.10 T+3, i+15 T+5, i+20 T+4, i+g_{2}\right)\right\} \quad \cup$ $\{(i, i+T+3, i+15 T+6, i+2 T+3),(i, i+3, i+$ $\left.\left.3 T+6, i+10 T+4, i+15 T+7, i+20 T+5, i+g_{3}\right)\right\}$ $\cup \ldots \cup\{(i, i+2 T, i+17 T, i+3 T),(i, i+T, i+$ $\left.\left.5 T, i+11 T+1, i+17 T+1, i+21 T+2, i+g_{T}\right)\right\}$ $(i=1,2, \ldots, n)$ ．
Last，decompose each $\left(C_{4}, C_{7}\right)-2 T$－foil into s $\left(C_{4}, C_{7}\right)$－2t－foils．Then they comprise a balanced $\left(C_{4}, C_{7}\right)$－2t－foil decomposition of K_{n} ．

Corollary．K_{n} has a balanced $\left(C_{4}, C_{7}\right)$－bowtie decomposition if and only if $n \equiv 1(\bmod 22)$ ．

References

［1］C．J．Colbourn，CRC Handbook of Combina－ torial Designs，CRC Press，1996．［2］C．J．Col－ bourn and A．Rosa，Triple Systems，Clarendom Press，Oxford，1999．［3］P．Horák and A．Rosa， Decomposing Steiner triple systems into small configurations，Ars Combinatoria，Vol．26，pp． 91－105，1988．［4］C．C．Lindner，Design The－
ory，CRC Press，1997．［5］K．Ushio，G－designs and related designs，Discrete Math．，Vol．116， pp．299－311，1993．［6］K．Ushio，Bowtie－ decomposition and trefoil－decomposition of the complete tripartite graph and the symmetric complete tripartite digraph，J．School Sci．Eng． Kinki Univ．，Vol．36，pp．161－164， 2000. ［7］ K．Ushio，Balanced bowtie and trefoil decom－ position of symmetric complete tripartite di－ graphs，Information and Communication Stud－ ies of The Faculty of Information and Commu－ nication Bunkyo University，Vol．25，pp．19－24， 2000．［8］K．Ushio and H．Fujimoto，Balanced bowtie and trefoil decomposition of complete tri－ partite multigraphs，IEICE Trans．Fundamen－ tals，Vol．E84－A，No．3，pp．839－844，March 2001．［9］K．Ushio and H．Fujimoto，Balanced foil decomposition of complete graphs，IEICE Trans．Fundamentals，Vol．E84－A，No．12，pp． 3132－3137，December 2001．［10］K．Ushio and H．Fujimoto，Balanced bowtie decomposition of complete multigraphs，IEICE Trans．Funda－ mentals，Vol．E86－A，No．9，pp．2360－2365， September 2003．［11］K．Ushio and H．Fuji－ moto，Balanced bowtie decomposition of sym－ metric complete multi－digraphs，IEICE Trans． Fundamentals，Vol．E87－A，No．10，pp．2769－ 2773，October 2004．［12］K．Ushio and H． Fujimoto，Balanced quatrefoil decomposition of complete multigraphs，IEICE Trans．Informa－ tion and Systems，Vol．E88－D，No．1，pp．19－22， January 2005．［13］K．Ushio and H．Fujimoto， Balanced C_{4}－bowtie decomposition of complete multigraphs，IEICE Trans．Fundamentals，Vol． E88－A，No．5，pp．1148－1154，May 2005．［14］ K．Ushio and H．Fujimoto，Balanced C_{4}－trefoil decomposition of complete multigraphs，IEICE Trans．Fundamentals，Vol．E89－A，No．5，pp． 1173－1180，May 2006．［15］W．D．Wallis，Com－ binatorial Designs，Marcel Dekker，New York and Basel， 1988.

