A-018

Balanced (C_4, C_7) -2t-Foil Decomposition Algorithm of Complete Graphs

Kazuhiko Ushio Department of Informatics Faculty of Science and Technology Kinki University ushio@info.kindai.ac.jp

1. Introduction

Let K_n denote the complete graph of n vertices. Let C_4 and C_7 be the 4-cycle and the 7-cycle, respectively. The (C_4, C_7) -2t-foil is a graph of tedge-disjoint C_4 's and t edge-disjoint C_7 's with a common vertex and the common vertex is called the center of the (C_4, C_7) -2t-foil. In particular, the (C_4, C_7) -2-foil is called the (C_4, C_7) bowtie. When K_n is decomposed into edgedisjoint sum of (C_4, C_7) -2t-foils, we say that K_n has a (C_4, C_7) -2t-foil decomposition. Moreover, when every vertex of K_n appears in the same number of (C_4, C_7) -2t-foils, we say that K_n has a balanced (C_4, C_7) -2t-foil decomposition and this number is called the replication number.

Note that (C_4, C_7) -2t-foil has 9t + 1 vertices and 11t edges.

It is a well-known result that K_n has a C_3 decomposition if and only if $n \equiv 1$ or 3 (mod 6). This decomposition is known as a Steiner triple system. See Colbourn and Rosa[2] and Wallis[15]. Horák and Rosa[3] proved that K_n has a (C_3, C_3) -bowtie decomposition if and only if $n \equiv 1$ or 9 (mod 12). This decomposition is known as a bowtie system.

In this sense, our balanced (C_4, C_7) -2t-foil decomposition of K_n is to be known as a balanced (C_4, C_7) -2t-foil system.

2. Balanced (C_4, C_7) -2t-foil decomposition of K_n

Theorem. K_n has a balanced (C_4, C_7) -2t-foil decomposition if and only if $n \equiv 1 \pmod{22t}$.

Proof. (Necessity) Suppose that K_n has a balanced (C_4, C_7) -2t-foil decomposition. Let b

be the number of (C_4, C_7) -2t-foils and r be the replication number. Then b = n(n-1)/22t and r = (9t+1)(n-1)/22t. Among $r (C_4, C_7)-2t$ foils having a vertex v of K_n , let r_1 and r_2 be the numbers of (C_4, C_7) -2t-foils in which v is the center and v is not the center, respectively. Then $r_1 + r_2 = r$. Counting the number of vertices adjacent to v, $4tr_1 + 2r_2 = n - 1$. From these relations, $r_1 = (n-1)/22t$ and $r_2 = 9(n-1)/22$. Therefore, $n \equiv 1 \pmod{22t}$ is necessary. (Sufficiency) Put n = 22st + 1, T = st. Then n = 22T + 1.When T = 1, construct a balanced (C_4, C_7) -2foil decomposition of K_{23} as follows: $B_i = \{(i, i+5, i+13, i+6), (i, i+1, i+3, i+6)\}$ 7, i + 10, i + 20, i + 9 (i = 1, 2, ..., 23).First, consider a sequence $S: g_1, g_2, g_3, \dots, g_T$. When T = 2, put $S : g_1, g_2$ with $g_1 = 21, g_2 =$ 19.When T = 3, put $S : g_1, g_2, g_3$ with $g_1 = 28, g_2 =$ $30, g_3 = 29.$ When T = 4, put $S : g_1, g_2, g_3, g_4$ with $g_1 =$ $39, g_2 = 41, g_3 = 38, g_4 = 37.$ When T = 5, put $S : g_1, g_2, g_3, g_4, g_5$ with $g_1 = 51, g_2 = 47, g_3 = 49, g_4 = 48, g_5 = 46.$ When $T \equiv 2 \pmod{4}$, $T \geq 6$, put T =4p + 2 and $S : g_1, g_2, g_3, ..., g_{4p+2}$ with S_1 : $g_1, g_3, g_5, \dots, g_{2p-1}$, $S_2 : g_2, g_4, g_6, \dots, g_{2p}$, $S_3 :$ g_{2p+1} , $S_4: g_{2p+2}, g_{2p+3}, g_{2p+4}, \dots, g_{4p+2}$ such as S_1 : 10T - 2, 10T - 4, 10T - 6, ..., 10T - 2p $S_2: 10T + 1, 10T - 1, 10T - 3, ..., 10T - 2p + 3$ $S_3: 10T - 2p + 1$ $S_4: 10T - 2p - 1, 10T - 2p - 1$ $2, 10T - 2p - 3, \dots, 9T + 1.$ When $T \equiv 3 \pmod{4}$, $T \geq 7$, put T = 4p + 7 and $S : g_1, g_2, g_3, ..., g_{4p+7}$ with S_1 : $g_1, g_{2p+3}, g_{4p+5}, g_{4p+6}, g_{4p+7}$, S_2 : $g_2, g_3, g_4, \dots, g_{2p+2}$

, S_3 : $g_{2p+4}, g_{2p+6}, g_{2p+8}, ..., g_{4p+4}$, S_4 : $g_{2p+5}, g_{2p+7}, g_{2p+9}, ..., g_{4p+3}$ such as S_1 : 10T + $\begin{array}{ll} 1,10T-2p-3,9T+5,9T+3,9T+1 & S_2:\\ 10T-1,10T-2,10T-3,...,10T-2p-1 & S_3:\\ 10T-2p-5,10T-2p-7,10T-2p-9,...,9T+2\\ S_4: 10T-2p-2,10T-2p-4,10T-2p-\\ 6,...,9T+7. \end{array}$

When $T \equiv 0 \pmod{4}$, $T \geq 8$, put T = 4p + 4 and $S : g_1, g_2, g_3, \dots, g_{4p+4}$ with $S_1 : g_1, g_3, g_5, \dots, g_{2p-1}$, $S_2 : g_2, g_4, g_6, \dots, g_{2p+2}$, $S_3 : g_{2p+1}$, $S_4 : g_{2p+3}, g_{2p+4}, g_{2p+5}, \dots, g_{4p+4}$ such as $S_1 : 10T - 2, 10T - 4, 10T - 6, \dots, 10T - 2p$ $S_2 : 10T + 1, 10T - 1, 10T - 3, \dots, 10T - 2p + 1$ $S_3 : 10T - 2p - 1$ $S_4 : 10T - 2p - 2, 10T - 2p - 3, 10T - 2p - 4, \dots, 9T + 1.$

When $T \equiv 1 \pmod{4}$, $T \geq 9$, put T = 4p + 9 and $S : g_1, g_2, g_3, \dots, g_{4p+9}$ with $S_1 : g_1, g_{2p+5}, g_{4p+7}, g_{4p+8}, g_{4p+9}$, $S_2 : g_2, g_3, g_4, \dots, g_{2p+3}$

Next, construct $n (C_4, C_7)$ -2T-foils as follows: $B_i = \{(i, i + T + 1, i + 15T + 2, i + 2T + 1), (i, i + 1, i + 3T + 2, i + 10T + 2, i + 15T + 3, i + 20T + 3, i + g_1)\} \cup \{(i, i + T + 2, i + 15T + 4, i + 2T + 2), (i, i + 2, i + 3T + 4, i + 10T + 3, i + 15T + 5, i + 20T + 4, i + g_2)\} \cup \{(i, i + T + 3, i + 15T + 6, i + 2T + 3), (i, i + 3, i + 3T + 6, i + 10T + 4, i + 15T + 7, i + 20T + 5, i + g_3)\} \cup \dots \cup \{(i, i + 2T, i + 17T, i + 3T), (i, i + T, i + 5T, i + 11T + 1, i + 17T + 1, i + 21T + 2, i + g_T)\} (i = 1, 2, ..., n).$

Last, decompose each (C_4, C_7) -2*T*-foil into *s* (C_4, C_7) -2*t*-foils. Then they comprise a balanced (C_4, C_7) -2*t*-foil decomposition of K_n .

Corollary. K_n has a balanced (C_4, C_7) -bowtie decomposition if and only if $n \equiv 1 \pmod{22}$.

References

 C. J. Colbourn, CRC Handbook of Combinatorial Designs, CRC Press, 1996. [2] C. J. Colbourn and A. Rosa, Triple Systems, Clarendom Press, Oxford, 1999. [3] P. Horák and A. Rosa, Decomposing Steiner triple systems into small configurations, Ars Combinatoria, Vol. 26, pp. 91–105, 1988. [4] C. C. Lindner, Design The-

[5] K. Ushio, G-designs ory, CRC Press, 1997. and related designs, Discrete Math., Vol. 116, pp. 299–311, 1993. [6] K. Ushio, Bowtiedecomposition and trefoil-decomposition of the complete tripartite graph and the symmetric complete tripartite digraph, J. School Sci. Eng. Kinki Univ., Vol. 36, pp. 161-164, 2000. [7]K. Ushio, Balanced bowtie and trefoil decomposition of symmetric complete tripartite digraphs, Information and Communication Studies of The Faculty of Information and Communication Bunkyo University, Vol. 25, pp. 19–24, [8] K. Ushio and H. Fujimoto, Balanced 2000.bowtie and trefoil decomposition of complete tripartite multigraphs, IEICE Trans. Fundamentals, Vol. E84-A, No. 3, pp. 839–844, March [9] K. Ushio and H. Fujimoto, Balanced 2001.foil decomposition of complete graphs, IEICE Trans. Fundamentals, Vol. E84-A, No. 12, pp. 3132–3137, December 2001. [10] K. Ushio and H. Fujimoto, Balanced bowtie decomposition of complete multigraphs, *IEICE Trans.* Fundamentals, Vol. E86-A, No. 9, pp. 2360–2365, [11] K. Ushio and H. Fuji-September 2003. moto, Balanced bowtie decomposition of symmetric complete multi-digraphs, IEICE Trans. Fundamentals, Vol. E87-A, No. 10, pp. 2769-2773, October 2004. [12] K. Ushio and H. Fujimoto, Balanced quatrefoil decomposition of complete multigraphs, IEICE Trans. Information and Systems, Vol. E88-D, No. 1, pp. 19-22, January 2005. [13] K. Ushio and H. Fujimoto, Balanced C_4 -bowtie decomposition of complete multigraphs, IEICE Trans. Fundamentals, Vol. E88-A, No. 5, pp. 1148–1154, May 2005. [14]K. Ushio and H. Fujimoto, Balanced C_4 -trefoil decomposition of complete multigraphs, IEICE Trans. Fundamentals, Vol. E89-A, No. 5, pp. 1173–1180, May 2006. [15] W. D. Wallis, Combinatorial Designs, Marcel Dekker, New York and Basel, 1988.