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Abstract: The parameterized pattern matching problem is to check if there exists a renaming
bijection on the alphabet with which a given pattern can be transformed into a substring of a given
text. A parameterized border array (p-border array) is a parameterized version of a standard border
array, and we can efficiently solve the parameterized pattern matching problem using p-border
arrays. In this paper we present an O(n1.5)-time O(n)-space algorithm to verify if a given integer
array of length n is a valid p-border array for an unbounded alphabet. The best previously known
solution takes time proportional to the n-th Bell number 1

e

∑∞
k=0

kn

k! , and hence our algorithm is
quite efficient.

1 Introduction

The parameterized matching (p-matching) problem [3] is a kind of string matching problem, where a pattern
is considered to occur in a text when there exists a renaming bijection on the alphabet with which the pattern
can be transformed into a substring of the text. Parameterized matching has applications in e.g. software
maintenance, plagiarism detection, and RNA structural matching, thus it has extensively been studied (e.g.,
see [1, 16, 12, 2, 13]).

In this paper we focus on parameterized border arrays (p-border arrays) [15], which are a parameterized
version of border arrays [18]. Let Π be the alphabet. The p-border array of a given pattern p of length m can
be computed in O(m log |Π|) time, and the p-matching problem can be solved in O(n log |Π|) time for any text
p-string of length n, using the p-border array [15].

This paper deals with the reverse engineering problem on p-border arrays, namely, the problem of verifying
if a given integer array of length n is a p-border array of some string. We propose an O(n1.5)-time O(n)-space
algorithm to solve this problem for an unbounded alphabet. We emphasize that the best previously known
solution to this problem takes time proportional to the n-th Bell number 1

e

∑∞
k=0

kn

k! , and hence our algorithm
is quite efficient.

Related Work: There exists a linear time algorithm to solve the reverse problem on p-border arrays for a
binary alphabet [14]. An O(pn)-time algorithm to enumerate all p-border arrays of length up to n on a binary
alphabet was also presented in [14], where pn denotes the number of p-border arrays of length at most n for a
binary alphabet.

In [10], a linear time algorithm to verify if a given integer array is the (standard) border array [18] of some
string was presented. Their algorithm works for both bounded and unbounded alphabets. A simpler linear-time
solution for the same problem for a bounded alphabet was shown in [8]. An algorithm to enumerate all border
arrays of length at most n in O(bn)-time was given in [10], where bn is the number of border arrays of length
at most n.

The reverse engineering problems, as well as the enumeration problems for other string data structures
(suffix arrays, DAWG, etc.) have been extensively studied [9, 4, 19, 5, 7, 11, 6], whose solutions give us further
insight concerning the data structures.

2 Preliminaries

Let Σ and Π be two disjoint finite alphabets. An element of (Σ ∪ Π)∗ is called a p-string. The length of any
p-string s is the total number of constant and parameter symbols in s and is denoted by |s|. The string of length
0 is called the empty string and is denoted by ε. For any p-string s of length n, the i-th symbol is denoted by
s[i] for each 1 ≤ i ≤ n, and the substring starting at position i and ending at position j is denoted by s[i : j]
for 1 ≤ i ≤ j ≤ n.

Any two p-strings s, t ∈ (Σ ∪ Π)∗ of length m are said to parameterized match (p-match) if s can be
transformed into t by a renaming function f from the symbols of s to the symbols of t, where f is the identify
on Σ. The p-matching problem on Σ ∪Π is reducible in linear time to the p-matching problem on Π [1]. Thus
we will only consider p-strings over Π.

1
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Let N be the set of non-negative integers. Let pv : Π∗ → N ∗ be the function s.t. for any p-string s of length
n > 0, pv(s) = u where, for 1 ≤ i ≤ n, u[i] = 0 if s[i] 6= s[j] for any 1 ≤ j < i, and u[i] = i− k if k = max{j |
s[i] = s[j], 1 ≤ j < i}. Let pv(ε) = ε. Two p-strings s and t of the same length m p-match iff pv(s) = pv(t).
For any p ∈ N ∗, let zeros(p) denotes the number of 0’s in p, that is, zeros(p) = |{i | p[i] = 0, 1 ≤ i ≤ |p|}|. For
any s ∈ Π, zeros(pv(s)) equals the number of different characters in s. For example, aabb and bbaa p-match
since pv(aabb) = pv(bbaa) = 0 1 0 1. Note zeros(pv(aabb)) = zeros(pv(bbaa)) = 2.

A parameterized border (p-border) of a p-string s of length n is any integer j s.t. 0 ≤ j < n and pv(s[1 : j]) =
pv(s[n− j + 1 : n]). For example, the set of p-borders of p-string aabb is {2, 1, 0} since pv(aa) = pv(bb) = 0 1,
pv(a) = pv(b) = 0, and pv(ε) = pv(ε) = ε. We also say that b is a p-border of p ∈ N ∗ if b is a p-border of
some p-string s ∈ Π∗ and p = pv(s). The parameterized border array (p-border array) βs of a p-string s of
length n is an array of length n such that βs[i] = j, where j is the longest p-border of s[1 : i]. For example,
for p-string s = aabbaa, βs = [0, 1, 1, 2, 3, 4]. When it is clear from the context, we abbreviate βs as β. Let
P = {pv(s) | s ∈ Π∗} and Pβ = {p ∈ P | β[i] is the longest p-border of p[1 : i], 1 ≤ i ≤ |β|}.

For any i, j ∈ N , let cut(i, j) = 0 if i ≥ j, and cut(i, j) = i otherwise. For any p ∈ P and 1 ≤ j ≤ |p|,
let suf (p, j) = cut(p[|p| − j + 1], 1)cut(p[|p| − j + 2], 2) · · · cut(p[|p|], j). Let suf (p, 0) = ε. For example, if
p[1 : 10] = 0 0 2 0 3 1 3 2 6 3, suf (p, 5) = cut(p[6], 1)cut(p[7], 2)cut(p[8], 3)cut(p[9], 4)cut(p[10], 5) = 0 0 2 0 3.
Then, for any p-string s ∈ Π∗ and 1 ≤ j ≤ |s|, suf (pv(s), j) = pv(s[|s| − j + 1 : |s|]). Hence, j is a p-border of
pv(s) iff suf (pv(s), j) = pv(s)[1 : j] for some 1 ≤ j < |s|.

This paper deals with the following problem.

Problem 1 (Verifying a valid p-border array). Given an integer array y of length n, determine if there exists
a p-string s such that βs = y.

To solve Problem 1, we can use the algorithm of Moore et al. [17] to generate all strings in Pn = {p | p ∈
P, |p| = n} in O(|Pn|) time, and then we check if p ∈ Py for each generated p ∈ Pn. Still, it is known that |Pn|
is equal to the n-th Bell number 1

e

∑∞
k=0

kn

k! .
As a much more efficient solution, we present our O(n1.5)-time algorithm in the sequel.

3 Properties on Parameterized Border Arrays

Here we introduce important properties of p-border arrays that are useful to solve Problem 1.
For any integer array `, let |`| denote the length of the integer array `. Let `[i : j] denote a subarray of

` for any 1 ≤ i ≤ j ≤ |`|. Let Γ = {γ | γ[1] = 0, 1 ≤ γ[i] ≤ γ[i − 1] + 1, 1 < i ≤ |γ|}. For any γ ∈ Γ
and any i ≥ 1, let γk[i] = γ[i] if k = 1, and γ[γk−1[i]] if k > 1 and γk−1[i] ≥ 1. By the definition of Γ, the
sequence i, γ1[i], γ2[i], . . . is monotonically decreasing and terminates with 1, 0. Let A = {α | α ∈ Γ, α[i] ∈
{α1[i − 1] + 1, α2[i − 1] + 1, . . . , 1}, 1 < i ≤ |α|}. It is clear that A ⊂ Γ. Let B denote the set of all p-border
arrays.

Lemma 1. B ⊆ Γ.

Proof. By definition, it is clear that β[1] = 0 and 1 ≤ β[i] for any 1 < i ≤ |β|. For any p ∈ Pβ and i, since
suf (p[1 : i], β[i]) = p[1 : β[i]], suf (p[1 : i − 1], β[i] − 1) = p[1 : β[i] − 1]. Thus β[i − 1] ≥ β[i] − 1, and therefore
β[i] ≤ β[i− 1] + 1.

Lemma 2. For any β ∈ B, p ∈ Pβ, and 1 ≤ i ≤ |p|, {β1[i], β2[i], . . . , 0} is the set of p-borders of p[1 : i].

Lemma 3. For any β ∈ B, p ∈ Pβ, and 1 ≤ i ≤ |p|, if p[i] = 0, then p[b] = 0 for any b ∈ {β1[i], β2[i], . . . , 1}.

Lemma 4. B ⊆ A.

Proof. For any β ∈ B, p ∈ Pβ and 1 < i ≤ |p|, since suf (p[1 : i], β[i]) = p[1 : β[i]], suf (p[1 : i − 1], β[i] − 1) =
p[1 : β[i] − 1]. Since β[i] − 1 is a p-border of p[1 : i − 1], β[i] − 1 ∈ {β1[i − 1], β2[i − 1], . . . , 0} by Lemma 2.
Hence, β[i] ∈ {β1[i− 1] + 1, β2[i− 1] + 1, . . . , 1}.

Definition 1 (Conflict Points). Let α ∈ A. For any c′, c (1 < c′ < c ≤ |α|), if α[c′] = α[c] and c′−1 = αk[c−1]
with some k, then c′ and c are said to be in conflict with each other. Such points are called conflict points.

Let Cα be the set of conflict points in α and Cα(c) be the set of points that conflict with c (1 ≤ c ≤ |α|).
For any i ≤ j ∈ N , let [i, j] = {i, i + 1, . . . , j} ⊂ N . We denote C

[i,j]
α = Cα ∩ [i, j] and C

[i,j]
α (c) = Cα(c) ∩ [i, j]

to restrict the elements of the sets within the range [i, j].
By Definition 1, C

[1,c]
α (c) = {c′} ∪C

[1,c′]
α (c′) where c′ = max C

[1,c]
α (c). Consider a tree such that Cα ∪ {⊥} is

the set of nodes where ⊥ is the root, and {(c′, c) | c ∈ Cα, c′ = max C
[1,c]
α (c)} ∪ {(⊥, c) | c ∈ Cα, C

[1,c]
α (c) = ∅}
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Fig. 1: The conflict tree of α =
[0, 1, 1, 2, 3, 4, 3, 1, 2, 1].
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p
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Fig. 2: Let c, c′ ∈ Cβ and β[c′] = β[c] = m. Then, c′ ∈
Cβ(c), p[1 : m] = suf (p[1 : c′],m) = suf (p[1 : c],m), and
p[1 : c′ − 1] = suf (p[1 : c− 1], c′ − 1).

the set of edges. This tree is called the conflict tree of α and it represents the relations of conflict points of α.
Let CTα(c) denote the set of children of node c and CT

[i,j]
α (c) = CTα(c) ∩ [i, j]. We define orderα(c) to be the

depth of node c and maxcα(c) = max{orderα(c′) | c′ ∈ {c} ∪ Cα(c)}.
Fig. 1 illustrates the conflict tree for α = [0, 1, 1, 2, 3, 4, 3, 1, 2, 1]. Here Cα = {2, 3, 5, 7, 8, 10}, Cα(3) =

{2, 10}, CTα(2) = {3, 8}, orderα(2) = orderα(5) = 1, orderα(3) = orderα(7) = orderα(8) = 2, orderα(10) = 3,
maxcα(5) = maxcα(7) = maxcα(8) = 2, maxcα(2) = maxcα(3) = maxcα(10) = 3, and so on.

Lemma 5 will be used to show the O(n1.5) time complexity of our algorithm of Section 4.

Lemma 5. For any α[1 : n] ∈ A, n ≥ 1 +
∑

c∈Cα
b2orderα(c)−2c.

Proof. Let ct ∈ Cα with t ≥ 2, C
[1:ct]
α (ct) = {c1, c2, . . . , ct−1} with c1 < c2 < · · · < ct. Let m = α[c1] =

α[c2] = · · · = α[ct]. By the definition of Γ, for any 1 < i ≤ n, α[i] ≤ α[i − 1] + 1. Then, it follows from
(ct− 1)− ct−1 ≥ α[ct− 1]−α[ct−1] that m + (ct− 1)− ct−1 ≥ α[ct− 1]. Consequently, by Definition 1, we have
ct ≥ 2ct−1−m from α[ct−1] ≥ ct−1−1. Hence, ct ≥ 2ct−1−m ≥ 22ct−2−m(1+2) ≥ · · · ≥ 2t−1c1−m

∑t−2
i=0 2i =

2t−1c1 −m(2t−1 − 1) = 2t−1(c1 −m) + m ≥ 2t−1 + m. It leads to α[ct]− (α[ct − 1] + 1) ≤ m− ct−1 ≤ −2t−2.
Since α[i] = 0 and 1 ≤ α[i] ≤ α[i− 1] + 1 for any 1 < i ≤ n, n− 1 should be greater than the value subtracted
over all conflict points. Therefore, the statement holds.

The relation between conflict points of β ∈ B and p ∈ Pβ is illustrated in Fig. 2.
Lemma 6 shows a necessary-and-sufficient condition for β[1 : i]m to be a valid p-border array of some

p[1 : i + 1] ∈ N ∗, when β[1 : i] is a valid p-border array.

Lemma 6. Let β[1 : i] ∈ B, m ∈ N , and p[1 : i + 1] ∈ N ∗. Then, β[1 : i]m ∈ B and p[1 : i + 1] ∈ Pβ[1:i]m if
and only if

p[1 : i + 1] ∈ P ∧ p[1 : i] ∈ Pβ[1:i] ∧ ∃k, βk[i] = m− 1 ∧ cut(p[i + 1], m) = p[m]

∧
(
Cβ[1:i]m(i + 1) 6= ∅ ⇒

(
p[m] = 0 ∧ ∀c ∈ Cβ[1:i]m(i + 1), p[i + 1] 6= p[c]

∧
(
∃c′ ∈ Cβ[1:i]m(i + 1), p[c′] = 0⇒ m ≤ p[i + 1] < c′

)))
.

Lemma 7 shows a yet stronger result, a necessary-and-sufficient condition for β[1 : i]m to be a valid p-border
array of length i + 1, when β[1 : i] is a valid p-border array of length i.

Lemma 7. Let β[1 : i] ∈ B and m ∈ N . Then, β[1 : i]m ∈ B if and only if

∃k, βk[i] = m− 1 ∧
(
Cβ[1:i]m(i + 1) 6= ∅ ⇒

(
∃p[1 : i] ∈ Pβ[1:i] s.t. p[m] = 0

∧
(
∃c′ ∈ Cβ[1:i]m(i + 1), p[c′] = 0⇒ zeros(p[m : c′ − 1]) ≥ |Cβ[1:i]m(i + 1)|

)))
.

Proofs of Lemmas 6 and 7 will be shown in a full version of this paper.
In the next section we design our algorithm to solve Problem 1 based on Lemmas 6 and 7.

4 Algorithm

This section presents our O(n1.5)-time O(n)-space algorithm to verify if a given integer array of length n is a
valid p-border array for an unbounded alphabet.
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4.1 Z-pattern Representation

Lemma 7 implies that, in order to check if β[1 : i]m ∈ B, it suffices for us to know if p[i] is zero or non-zero
for each i. Let ? be a special symbol s.t. ? 6= 0. For any p ∈ P and 1 ≤ i ≤ |p|, let ptoz (p)[i] = 0 if p[i] = 0,
and ptoz (p)[i] = ? otherwise. The sequence ptoz (p) ∈ {0, ?}∗ is called the z-pattern of p. For any β ∈ B, let
Zβ = {ptoz (p) | p ∈ Pβ}.

The next lemma follows from Lemmas 3, 6, and 7.

Lemma 8. Let β ∈ B and z ∈ {0, ?}∗. Then, z ∈ Zβ if and only if all of the following conditions hold for
any 1 ≤ i ≤ |z|: (1) i = 1 ⇒ z[i] = 0. (2) z[β[i]] = ? ⇒ z[i] = ?. (3) ∃c ∈ Cβ , ∃k, i = βk[c] ⇒ z[i] = 0.
(4) ∃c ∈ Cβ(i), z[c] = 0 ⇒ z[i] = ?. (5) i ∈ Cβ ∧ zeros(z[β[i] : i − 1]) < maxcβ(i) − 1 ⇒ z[i] = ?. (6)
i ∈ Cβ ∧ zeros(z[β[i] : i− 1]) = orderβ(i)− 1⇒ z[i] = 0.

Let Eβ = {i | ∃c ∈ Cβ , ∃k, i = βk[c]}. For any z ∈ Zβ and i ∈ Eβ , z[i] is always 0.
We check if a given integer array y[1 : n] is a valid p-border array in two steps. Step 1: While scanning

y[1 : n] from left to right, check whether y[1 : n] ∈ A and whether each position i (1 ≤ i ≤ n) of y satisfies
Conditions 3 and 4 of Lemma 8. Also, we compute Ey, and ordery(i) and maxcy(i) for each i ∈ Cy. Step 2:
For each i = 1, 2, . . . , n, we determine the value of z[i] so that the conditions of Lemma 8 hold.

If we can determine z[i] for all i = 1, 2, . . . , n in Step 2, then the input array y is a p-border array of some
p ∈ P such that ptoz (p) = z.

4.2 Pruning Techniques

Given an integer array y of length n, we inherently have to search {0, ?}n for a z-pattern z ∈ Zy. To achieve an
efficient solution, we utilize the following pruning lemmas.

For any β ∈ B and 1 ≤ i ≤ |β|, we write as u[1 : i] ∈ Zi
β if and only if u[1 : i] ∈ {0, ?}∗ satisfies all the

conditions of Lemma 8 for any j (1 ≤ j ≤ i). For any h > i, let z[h] = 0 if h ∈ Eβ , and leave it undefined
otherwise. Clearly, for any z ∈ Zβ and 1 ≤ i ≤ |β|, z[1 : i] ∈ Zi

β .
We can use the contraposition of the next lemma for pruning the search tree at each non-conflict point of y.

Lemma 9. Let β ∈ B and i /∈ Cβ (2 ≤ i ≤ |β|). For any u[1 : i − 1] ∈ Zi−1
β , if u[β[i]] = 0 and there exists

z ∈ Zβ s.t. z[1 : i] = u[1 : i− 1]?, then there exists z′ ∈ Zβ s.t. z′[1 : i] = u[1 : i− 1]0.

Proof. For any 1 ≤ j ≤ |β|, let v[j] = 0 if j = i, and v[j] = z[j] otherwise. Now we show v ∈ Zβ . v[i] clearly
holds all the conditions of Lemma 8. Since v[j] = z[j] at any other points, v[j] satisfies Conditions 1, 2, 3 and 4.
Furthermore, for any c ∈ Cβ , v[c] holds Conditions 5 and 6, since zeros(v[β[c] : c − 1]) ≥ zeros(z[β[c] : c − 1])
and z[c] holds those conditions.

Next, we discuss our pruning technique regarding conflict points of y. Let β ∈ B. c ∈ Cβ is said to be
an active conflict point of β, iff Eβ ∩ ({c} ∪ Cβ(c)) = ∅. Obviously, for any z ∈ Zβ and c ∈ Cβ , z[c] = 0 if
Eβ ∩ {c} 6= ∅ and z[c] = ? if Eβ ∩ Cβ(c) 6= ∅. Hence we never branch out at any inactive conflict point during
the search for z ∈ Zβ . Let ACβ be the set of active conflict points in β. Our pruning method for active conflict
points is described in Lemma 10.

Lemma 10. Let β ∈ B, i ∈ ACβ and i ≤ r ≤ |β| with |CT
[1,r]
β (i)| < 2. For any u[1 : i − 1] ∈ Zi−1

β , if
u[1 : i − 1]0 ∈ Zi

β and there exists z[1 : r] ∈ Zr
β s.t. z[1 : i] = u[1 : i − 1]?, then there exists z′[1 : r] ∈ Zr

β s.t.
z′[1 : i] = u[1 : i− 1]0.

In order to prove Lemma 10, particularly to ensure Conditions 5 and 6 of Lemma 8 hold, we will estimate
the number of 0’s within the range [β[c], c − 1] for each c ∈ Cβ that is obtained when the prefix of a z-
pattern is u[1 : i − 1]0. Here, for any α ∈ A and 1 ≤ b ≤ |α|, let Fα(b) = {b} ∪ {b′ | ∃k, b = αk[b′]} and
F

[i,j]
α (b) = Fα(b) ∩ [i, j]. Then, the number of 0’s related to i within the range [β[c], c− 1] can be estimated by
|F [β[c],c−1]

β (i)|. The following lemmas show some properties of Fα(b) that are useful to prove Lemma 10 above.

Lemma 11. Let α ∈ A. For any 1 ≤ b ≤ |α| and 1 < i < |α|,

|F [α[i+1],i]
α (b)| − |F [α[i],i−1]

α (b)| −
k′−1∑
k=1

|F [αk+1[i],αk[i]−1]
α (b)| =

{
1 if i ∈ Fα(b) and αk′

[i] /∈ Fα(b),
0 otherwise,

where k′ is the integer such that αk′
[i] = α[i + 1]− 1.
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Proof. Since [α[i+1]−1, i−1] = [αk′
[i], αk′−1[i]−1]∪[αk′−1[i], αk′−2[i]−1]∪· · ·∪[α1[i], i−1], |F [α[i+1]−1,i−1]

α (b)| =
|F [α[i],i−1]

α (b)|+
∑k′−1

k=1 |F
[αk+1[i],αk[i]−1]
α (b)| Then, the key is whether each of i and α[i+1]− 1 is in Fα(b) or not.

Obviously, if αk′
[i] = α[i + 1]− 1 ∈ Fα(b), then i ∈ Fα(b). It leads to the statement.

Lemma 11 implies that |F [α[i],i−1]
α (b)| is monotonically increasing for i.

Lemma 12. Let α ∈ A and c′, c ∈ Cα with c′ ∈ C
[1,c]
α (c). For any 1 ≤ b < c′, |F [m,c−1]

α (b)| ≥ |F [α[c−1],c−2]
α (b)|+∑k′−1

k=1 |F
[αk+1[c−1],αk[c−1]−1]
α (b)|+ 1, where m = α[c′] = α[c] and k′ is the integer such that αk′

[c− 1] = c′ − 1.

Proof. In a similar way to the proof of Lemma 11, we have |F [m,c−2]
α (b)| = |F [α[c−1],c−2]

α (b)| +
∑k′−1

k=1

|F [αk+1[c−1],αk[c−1]−1]
α (b)| + |F [m,c′−2]

α (b)|. Since c − 1 /∈ Fα(b) ⇒ αk′
[c − 1] = c′ − 1 /∈ Fα(b), |F [m,c−1]

α (b)| ≥
|F [α[c−1],c−2]

α (b)|+
∑k′−1

k=1 |F
[αk+1[c−1],αk[c−1]−1]
α (b)|+|F [m,c′−1]

α (b)|. Also, |F [m,c′−1]
α (b)| ≥ 1 follows from Lemma 11.

Hence, the lemma holds.

Lemma 13. For any α ∈ A, 1 ≤ b < b′ ≤ |α| and 1 ≤ i < |α|, |F [α[i+1],i]
α (b)| ≥ |F [α[i+1],i]

α (b′)|.

Proof. We will prove the lemma by induction on i. First, for any 1 ≤ i < b, it is clear that |F [α[i+1],i]
α (b)| =

|F [α[i+1],i]
α (b′)| = 0. Second, for any b ≤ i < b′, it follows from Lemma 11 that |F [α[i+1],i]

α (b)| ≥ 1. Then,
|F [α[i+1],i]

α (b)| ≥ 1 > 0 = |F [α[i+1],i]
α (b′)|. Finally, when b′ ≤ i < |α|, let k′ be the integer such that αk′

[i] =
α[i+1]−1. (I) When i /∈ Fα(b′) or αk′

[i] = α[i+1]−1 ∈ Fα(b′). It follows from Lemma 11 that |F [α[i+1],i]
α (b)| ≥

|F [α[i],i−1]
α (b)|+

∑k′−1
k=1 |F

[αk+1[i],αk[i]−1]
α (b)| and |F [α[i+1],i]

α (b′)| = |F [α[i],i−1]
α (b′)|+

∑k′−1
k=1 |F

[αk+1[i],αk[i]−1]
α (b′)|. By

the induction hypothesis, we have |F [α[i],i−1]
α (b)| ≥ |F [α[i],i−1]

α (b′)| and |F [αk+1[i],αk[i]−1]
α (b)| ≥ |F [αk+1[i],αk[i]−1]

α (b′)|
for any 1 ≤ k ≤ k′ − 1. Hence, |F [α[i+1],i]

α (b)| ≥ |F [α[i+1],i]
α (b′)|. (II) When i ∈ Fα(b′) and αk′

[i] =
α[i + 1] − 1 /∈ Fα(b′). There always exists b′ ∈ {i, α1[i], . . . , αk′−1[i]}, and therefore |F [α[b′],b′−1]

α (b)| ≥ 1 >

0 = |F [α[b′],b′−1]
α (b′)|. Then, |F [α[i+1],i]

α (b)| ≥ |F [α[i],i−1]
α (b)| +

∑k′−1
k=1 |F

[αk+1[i],αk[i]−1]
α (b)| ≥ 1 + |F [α[i],i−1]

α (b′)|+∑k′−1
k=1 |F

[αk+1[i],αk[i]−1]
α (b′)| = |F [α[i+1],i]

α (b′)|. Hence, |F [α[i+1],i]
α (b)| ≥ |F [α[i+1],i]

α (b′)|.

In a similar way, we have the next lemma.

Lemma 14. Let α ∈ A and c ∈ Cα with CTα(c) = {c′}. For any 1 ≤ i < |α|, |F [α[i+1],i]
α (c)| ≥

∑
g∈G|F

[α[i+1],i]
α (g)|,

where G = (C [c,|α|]
α (c)− c′).

Now, we are ready to prove Lemma 10. We will use Lemmas 13 and 14.

Proof. Let G = {g | g ∈ C
[i,r]
β (i), z[g] = 0}. Let v be the sequence s.t. for each 1 ≤ j ≤ r, v[j] = 0 if j ∈ Fβ(i),

v[j] = ? if there is g ∈ G s.t. j ∈ Fβ(g), and v[j] = z[j] otherwise.
Now we show v ∈ Zβ . By the definition of v and u[1 : i− 1]0 ∈ Zi

β , it is clear that v[j] holds Conditions 1,
2, 3 and 4 of Lemma 8 for any 1 ≤ j ≤ r. Furthermore, u[1 : i − 1]? ∈ Zi

β means that zeros(v[β[i] :

i − 1]) ≥ maxcβ(i) − 1. Hence, v[c] satisfies Conditions 5 and 6 for any c ∈ C
[1,r]
β (i) since zeros(v[β[c] :

c − 1]) ≥ zeros(v[β[i] : i − 1]) and maxcβ(i) − 1 ≥ maxcβ(c) − 1. Then, as the proof of Lemma 9, we have
only to show zeros(v[β[c] : c − 1]) ≥ zeros(z[β[c] : c − 1]) for any c ∈ Cβ . This can be proven by showing
|F [β[c],c−1]

β (i)| ≥
∑

g∈G|F
[β[c],c−1]
β (g)|. Since it is clear in case where G = ∅, we consider the case where G 6= ∅.

Let c′ = CTβ(i). Note that |CTβ(i)| = 1 by the assumption. (I) When z[c′] = 0. Since z[1 : r] satisfies
Condition 4of Lemma 8, G = {c′}. It follows from Lemma 13 that |F [β[c],c−1]

β (i)| ≥ |F [β[c],c−1]
β (c′)| for any

c ∈ C
[1,r]
β . (II) When z[c′] 6= 0. It follows from Lemma 14 that |F [β[c],c−1]

β (i)| ≥
∑

g∈G|F
[β[c],c−1]
β (g)| for any

c ∈ C
[1,r]
β . Therefore, the lemma holds.

4.3 Complexity Analysis

Algorithm 1 shows our algorithm that solves Problem 1.

Theorem 1. Algorithm 1 solves Problem 1 in O(n1.5) time and O(n) space for an unbounded alphabet.
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Algorithm 1: Algorithm to verify p-border array
Input: an integer array y[1 :n]
Output: whether y is a valid p-border array or not
/* zeros[1 :n] : zeros[i] = zeros(z[1 : i]). zeros[0] = 0 for convenience. */

/* sign[1 :n] : sign[i] = 1 if i ∈ Ey, sign[i] = −1 if (C [i,n]
y (i) ∩ Ey) 6= ∅. */

/* prevc[1 :n] : prevc[i] = max C
[1,i]
y (i), prevc[i] = 0 otherwise. */

if y[1 :2] 6= [0, 1] then return invalid;1

sign[1 :n]← [1, 0, .., 0]; prevc[1 :n]← [0, .., 0]; order [1 :n]← [0, .., 0]; maxc[1 :n]← [0, .., 0];2

for i = 3 to n do3

if y[i] = y[i− 1] + 1 then continue;4

b′ ← y[i− 1]; b← y[b′];5

while b > 0 & y[i] 6= y[b′ + 1] & y[i] 6= b + 1 do6

b′ ← b; b← y[b′];7

if y[i] = y[b′ + 1] then /* i conflicts with b′ + 1 */8

j ← y[i];9

while sign[j] = 0 & order [j] = 0 do /* z[y1[i]], z[y2[i]], . . . , z[0] must be 0 */10

sign[j]← 1; j ← y[j];11

if sign[j] = −1 then return invalid;12

if sign[j] 6= 1 then13

sign[j]← 1; j ← prevc[j];14

while j > 0 do /* ∀j ∈ C
[1,i]
y (i), z[j] must be ? */15

if sign[j] = 1 then return invalid;16

sign[j]← −1; j ← prevc[j];17

if order [b′ + 1] = 0 then order [b′ + 1]← 1;18

prevc[i]← b′ + 1; order [i]← order [b′ + 1] + 1; maxc[i]← order [b′ + 1] + 1; j ← b′ + 1;19

while j > 0 & maxc[j] < order [b′ + 1] + 1 do20

maxc[j]← order [b′ + 1] + 1; j ← prevc[j];21

else if y[i] 6= b + 1 then return invalid;22

cnt[1 :n]← [−1, ..,−1]; zeros[1]← 1;23

return CheckPBA(2, n, y[1 :n], zeros[1 :n], sign[1 :n], cnt[1 :n], prevc[1 :n], order [1 :n],maxc[1 :n]);24

Proof. The correctness should be clear from the discussions in the previous subsections.
Let us estimate the time complexity of Algorithm 1 until the CheckPBA function is called at Line 24. As in

the failure function construction algorithm, the while loop of Line 6 is executed at most n times. Moreover, for
any 1 ≤ i ≤ n, the values of z[i], prevc[i], and order [i] are updated at most once. When i is a conflict point,
Line 20 is executed at most ordery(i)−1 times. Hence, it follows from Lemma 5 that the total number of times
Line 20 is executed is

∑
c∈Cy

(ordery(c)− 1) ≤ 1 +
∑

c∈Cy
b2ordery(c)−2c ≤ n.

Next, we show the CheckPBA function takes in O(n1.5) time for any input α ∈ A. Let 2 ≤ r1 < r2 < · · · <
rx ≤ n be the positions for which we execute Line 6 or 10 when we first visit these positions. If such positions
do not exist, CheckPBA returns “valid” in O(n) time. Let us consider x ≥ 1. For any 1 ≤ t ≤ x, let zt[1 : rt − 1]
denote the z-pattern when we first visit rt and let lt = min{c | c ∈ AC

[1,rt−1]
α , zt[c] = 0}. If x = 1 and such

l1 does not exist, then CheckPBA returns “invalid” in O(n) time. If x > 1, then there exists l1 as we reach rx.
Furthermore, there exists lt s.t. lt < r1 since otherwise we cannot get across r1. Henceforth, we may assume
l1 ≤ l2 ≤ · · · ≤ lx exist. Note that by the definition of active conflict points, all elements of Fα(lt) − {lt} are
not conflict points, and therefore for any b ∈ Fα(lt), zt[b] = 0.

Here, let L1 = {c | c ∈ C
[l1+1,r1]
α , l1 < maxC

[1,c]
α (c)} and Lt = {c | c ∈ C

[rt−1+1,rt]
α , lt < maxC

[1,c]
α (c)}

for any 1 < t ≤ x. Since L1, L2, . . . , Lx are pairwise disjoint, |L| =
∑x

t=1|Lt|, where L =
∪x

t=1 Lt. It follows
from Lemma 12 that |F [α[rt],rt−1]

α (lt)| − |F [α[rt−1],rt−1−1]
α (lt)| ≥ |Lt|. In addition, for any 1 ≤ t ≤ x, let

Ein
t = Eα ∩ ([α[rt], rt − 1] − [α[rt−1], rt−1 − 1]}) and Eout

t = Eα ∩ ([α[rt−1], rt−1 − 1] − [α[rt], rt − 1]}), where
[α[r0], r0 − 1] = ∅. Since for any 1 < t ≤ x, zeros(zt[α[rt−1] : rt−1 − 1]) ≥ zeros(zt−1[α[rt−1] : rt−1 − 1]) + 1,
zeros(zt[α[rt] : rt − 1]) ≥ zeros(zt[α[rt−1] : rt−1 − 1]) + |Ein

t | − |Eout
t |+ |F

[α[rt],rt−1]
α (lt)| − |F [α[rt−1],rt−1−1]

α (lt)|
≥ zeros(zt−1[α[rt−1] : rt−1 − 1]) + 1 + |Ein

t | − |Eout
t | + |Lt|. By recursive procedures, we have orderα(rx) ≥

1 + zeros(zx[α[rx] : rx − 1]) ≥ zeros(z1[α[r1] : r1 − 1]) + x +
∑x

t=2|Ein
t | −

∑x
t=2|Eout

t | +
∑x

t=2|Lt|. Since
zeros(z1[α[r1] : r1 − 1]) ≥ 1 + |Ein

1 |+ |L1| and
∑x

t=1|Ein
t | −

∑x
t=2|Eout

t | ≥ 1, then orderα(rx) ≥ 2 + x + |L|.
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Function CheckPBA(i, n, y[1 :n], zeros[1 :n], sign[1 :n], cnt[1 :n], prevc[1 :n], order [1 :n], maxc[1 :n])
Result: whether y is a valid p-border array or not
if i = n then return valid;1

if order [i] = 0 then /* i is not a conflict point */2

zeros[i]← zeros[i− 1] + zeros[y[i]]− zeros[y[i]− 1];3

return CheckPBA(i + 1, n, y[1 :n], . . . , maxc[1 :n]);4

if sign[i] = 1 then /* z[i] must be 0 */5

if zeros[i− 1]− zeros[y[i]− 1] < maxc[i]− 1 then return invalid;6

zeros[i]← zeros[i− 1] + 1;7

return CheckPBA(i + 1, n, y[1 :n], . . . , maxc[1 :n]);8

if sign[i] = −1 ‖ zeros[i− 1]− zeros[y[i]− 1] < maxc[i]− 1 then /* z[i] must be ? */9

if zeros[i− 1]− zeros[y[i]− 1] < order [i] then return invalid;10

zeros[i]← zeros[i− 1];11

return CheckPBA(i + 1, n, y[1 :n], . . . , maxc[1 :n]);12

/* from here sign[i] = 0 and zeros[i− 1]− zeros[y[i]− 1] ≥ maxc[i]− 1 */
if cnt[i] = −1 then /* first time arriving at i */13

cnt[i] + +; cnt[prevc[i]] + +14

if prevc[i] > 0 & sign[prevc[i]] = 1 then /* ∃c ∈ C
[1,i]
y (i), z[c] = 0 */15

sign[i]← 1; zeros[i]← zeros[i− 1];16

ret← CheckPBA(i + 1, n, y[1 :n], . . . ,maxc[1 :n]); sign[i]← 0;17

return ret;18

sign[i]← 1; zeros[i]← zeros[i− 1] + 1;19

ret← CheckPBA(i + 1, n, y[1 :n], . . . ,maxc[1 :n]); sign[i]← 0;20

if ret = valid ‖ cnt[i] < 2 then return ret;21

zeros[i]← zeros[i− 1];22

return CheckPBA(i + 1, n, y[1 :n], . . . , maxc[1 :n]);23

Now, we evaluate the number of z-patterns we search for during the calls of CheckPBA. Let C2(t) = {c |
c ∈ C

[lt,rt]
α , |CT

[lt,rt]
α (c)| ≥ 2} for any 1 ≤ t ≤ x and T ′ = {1} ∪ {t | 1 < t ≤ x, lt−1 < lt, |CT

[lt,rt−1]
α (lt)| = 0}.

Let us assume T ′ = {t′1, t′2, . . . , t′x′} with 1 = t′1 < t′2 < · · · < t′x′ ≤ x. By Lemmas 9 and 10, the number of
z-patterns searched for between lt′j and rt′j+1−1 is at most 2|C

′
2(t

′
j)| for any 1 ≤ j ≤ x′, where t′x′+1 − 1 = x and

C ′
2(t

′
j) =

∪t′j+1−1

t=t′j
C2(t). Then, the total number of z-patterns is at most

∑x′

j=1 2|C
′
2(t

′
j)|. By Lemma 10, for any

1 ≤ j < x′, lt′j must be in C ′
2(t

′
j) and by the definition of T ′, lt′j is only in C ′

2(t
′
j). Hence, if C2 =

∪x
t=1 C2(t),

then |C ′
2(t

′
j)| ≤ |C2| − (x′ − 2), and therefore

∑x′

j=1 2|C
′
2(t

′
j)| ≤ 4x′2|C2|−x′

.
Finally, we consider the relation between L and C2 (See Fig. 3). By the definition of L and C2, for any

c ∈ (C2−{l1, l2, . . . , lx}), |CTα(c)∩L| ≥ 2. In addition, by the definition of T ′, for any c ∈ (C2∩{l1, l2, . . . , lx}−
{lt′1 , lt′2 , . . . , lt′x′

}), |CTα(c)∩L| ≥ 1. Here, let x′′ = |{l1, l2, . . . , lx}−{lt′1 , lt′2 , . . . , lt′x′
}|. Clearly, x′ +x′′ ≤ x. For

these reasons, orderα(rx) ≥ 2+x+ |L| ≥ 2+x+2|C2|−2(x′+x′′)+x′′ ≥ 2+2|C2|−x′. It follows from Lemma 5
that n ≥ 1 +

∑
c∈Cα

b2orderα(c)−2c > 1 +
∑2+2|C2|−x′

i=2 2i−2 = 22|C2|−x′+1 and
√

n > 2
1+x′

2 2|C2|−x′
> x′2|C2|−x′

.

Hence, the total time complexity is proportional to n
∑x′

j=1 2|C
′
2(t

′
j)| ≤ 4nx′2|C2|−x′

< 4n
√

n.
The space complexity is O(n) as we use only a constant number of arrays of length n.

5 Conclusions and Open Problems

We presented an O(n1.5)-time O(n)-space algorithm to verify if a given integer array y of length n is a valid
p-border array for an unbounded alphabet. In case y is a valid p-border array, the proposed algorithm also
computes a z-pattern z ∈ {0, ?}∗ s.t. z ∈ Zy, and we remark that some sequence p ∈ Py s.t. ptoz (p) = z is then
computable in linear time from z.

Open problems of interest are: (1) Can we solve the p-border array reverse problem for an unbounded
alphabet in o(n1.5) time? (2) Can we efficiently solve the p-border array reverse problem for a bounded
alphabet? (3) Can we efficiently count p-border arrays of length n?
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1r1l

t’ = 11

2r2l

3r3l

4r4l

5r5l

t’ = 32

t’ = 53

Fig. 3: Relation between L and C2. A pair of a big circle and a small circle connected by an arc represents a
parent-child relation in the conflict tree. © is a position in C2. • or ◦ is a position in L. � is a position not
in L.
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