
Implementation and Evaluation of a Significant Fourier Transform

Algorithm

Kazuki Tsubo† Thomas Zeugmann†

1. Introduction

In mathematics, the Fourier transform is an opera-
tion that transforms one complex-valued function of
a real variable into another. Nowadays the Fourier
transform is used in various fields; so it is a very impor-
tant operation. In computer science, the Fast Fourier
Transform (abbr. FFT) algorithm is widely used and
it calculates Discrete Fourier Transform efficiently
in time O(N logN), where N is the input size. How-
ever, for data intensive applications, even the FFT may
be too slow. Starting from the observation that in
many applications not the entire Fourier transform is
needed, but only the τ -significant Fourier transform co-
efficients, Akavia [1] proposed the Significant Fourier
Transform (abbr. SFT) algorithm.

That is, we only compute Fourier coefficients whose
magnitude is at least τ -fraction (say, 1%) of the en-
ergy, i.e., the sum of squared Fourier coefficients. This
deterministic algorithm finds the τ -significant Fourier
coefficients of functions f over any finite Abelian group
G in time polynomial in log|G|, 1/τ and L1(f̂) (here
L1(f̂) denotes the sum of absolute values of the Fourier
coefficients of f). The computing time of SFT does not
use N , this point is superior to FFT. This effect be-
comes visible as N grows. The present abstract reports
our experience in implementing the SFT algorithm and
verifies that it is indeed much faster than the FFT.

2. Preliminaries

2.1 The Discrete Fourier Transform Problem

To compute the Discrete Fourier Transform (DFT)
is well studied problem. We denote by ZN = Z/NZ the
additive group of integers modulo N . The inner prod-
uct of complex valued functions f, g over a domain G
is 〈f, g〉 = 1

|G|Σx∈G f(x)g(x). The Fourier transform
of a complex valued function f over G is the function
f̂ :G → C defined by f̂(α) = 〈f, χα〉. Here χα is a
character of ZN . The characters of ZN are the func-
tions {χα: ZN → C}α∈ZN defined by χα = ωαxN , where
ωN = e

2πi
N is a complex N -th root of unity.

†Graduate School of Information Science and Technology,
Hokkaido University.

2.2 Notations and Definitions

Significant Fourier Coefficients. For any α ∈ ZN ,
valα ∈ C and τ, ε ∈ [0, 1], we say that α is a τ -
significant Fourier coefficient iff |f̂(α)|2 ≥ τ ||f ||22.

Small biased sets [4]. We say that a set A ⊆ ZN is
γ-biased in ZN if |Ex∈A[χα(x)]| ≤ γ for every non
trivial character χα of the group ZN , α 6= 0.

(γ, I)-biased sets [1]. For any Abelian group G and
subsets B, I ⊆ G, we say that B is (γ, I)− biased
in G if for every character χ of the group G,
|Ex∈B∩I [χ(x)]− Ex∈I [χ(x)]| ≤ γ.

3. Algorithms
3.1 Fast Fourier Transform (FFT)

The FFT is an efficient algorithm to compute the
DFT and its inverse. By far the most common method
used to compute the FFT is the Cooley-Tukey algo-
rithm [3]. This algorithm is to divide the transform
into two pieces of size N/2 at each step, and is there-
fore limited to power-of-two sizes.
3.2 Significant Fourier Transform (SFT)

The SFT algorithm exclusively computes the Fourier
coefficients whose magnitude is at least a τ -fraction of
the energy. This algorithm is deterministic and effi-
cient. Its running time and query complexity is poly-
nomial in log |G|, 1/τ and L1(f̂) . The SFT algorithm
is composed of two parts:

1. Queries generating part. A set of entries S =
S(G, τ, t) ⊆ G is chosen, given G, τ, t.

2. Fixed Queries part. The significant Fourier coeffi-
cients of a function f : G→ C such that L1(f̂) ≤ t
are found, given G, τ and the restriction to S of f .

Additionally, we also need the so-called Distinguish-
ing Algorithm (cf. Akavia [1]) which takes as inputs
{a, b} ∈ ZN × ZN , τ ∈ R+, A, B ⊆ ZN and
{(x, f(x))}x∈A\B . Here, A, and B are small biased
set.

The output is 0 or 1, i.e., the Distinguishing Algo-
rithm checks whether or not there exist a τ -significant
Fourier coefficient in the range {a, b}.

The Distinguishing Algorithm is called by the Fixed
Queries part.

FIT2010（第 9回情報科学技術フォーラム）

179

A-015

（第1分冊）

4. Preparation
We implemented the SFT algorithm in C++. The

algorithm is based on the SFT theory given in [1], but
two points have been improved. One point is value of γ.
The other point concerns the small biased sets. These
two points were an important parts in mounting.
4.1 Presumption of γ and ‖f‖22.

In the first part of the SFT algorithm, we have to
get γ. But γ = O(τ

t2(1+logN)) is difficult to compute.
So, we adopted binary search here, because we know
roughly the range of γ. There remains a problem to
obtain the expression precisely which we shall resolve in
the future. Right now, we have been mainly interested
in the running time.

Furthermore, ||f ||22 is treated as a threshold, but this
value is difficult to compute, too. In the SFT algo-
rithm, it is approximated by ||f ||22 = 1

|A|Σx∈Af(x)2 +
O(τ ||f ||22). Clearly, the problem here is the error mar-
gin of O(τ ||f ||22). We resolve this problem by the same
method.
4.2 Constructing a Small Biased Set

In the SFT algorithm, we need a γ-biased set. We
already know γ from the previous part described above.
There is some explicit generating method [4], [5]. The
most efficient method is preferable. We implemented
the random method proposed by [2]. As stated there:

A random set Sm of size |Sm| = O(m/γ2) is
γ-biased set with very high probability.

5. Results
Here we only report the computing time, i.e., we

did not include the search time. This problem can be
solved if we theoretically obtain a strict expression for
γ and ||f ||22.

The experiments have been executed on a notebook
PC (Atom1.66GHz, MEM1GB, WinXP).

τ = 0.1
N FFT time(s) SFT time(s) Set size

1024 0 0 1
2048 0 0 1
4096 0.016 0 1
8192 0.047 0 1
16384 0.078 0.062 1
32768 0.157 0.031 1

τ = 0.01
N FFT time(s) SFT time(s) Set size

1024 0 0 1
2048 0 0 1
4096 0.015 0.015 1
8192 0.032 0.016 1
16384 0.062 0.047 1
32768 0.14 0.046 1

τ = 0.001
N FFT time(s) SFT time(s) Set size

1024 0 0.062 96
2048 0 0.078 44
4096 0.016 0.141 14
8192 0.047 0.016 1
16384 0.078 0.031 1
32768 0.141 0.032 1

6. Conclusions
It has been verified that the SFT is efficiently com-

putable regardless of the size of N . However, when the
elements of returned as answers do increase, it might
be slower than the FFT. As a future tasks, we plan to
improve the accuracy of the presumption. Moreover,
we aim to apply the SFT to an actual sample, e.g., a
jpeg image, etc. We want to learn whether or not the
SFT really applies to such problems that are usually
solved by using the FFT but for which the SFT has
been designed to reduce the computation time.

References
[1] A. Akavia. Finding significant Fourier transform

coefficients deterministically and locally. Technical
Report TR08-102, Electronic Colloquium on Com-
putational Complexity, 2008.

[2] A. Akavia and R. Venkatesan. Perturbation codes.
In 46th Annual Allerton Conference on Communi-
cation, Control, and Computing, pages 1403–1409.
IEEE, 2008.

[3] J. W. Cooley and J. W. Tukey. An algorithm for the
machine calculation of fourier series. Mathematics
of Computation, 19:297–301, 1965.

[4] J. Naor and M. Naor. Small-bias probability spaces:
Efficient constructions and applications. SIAM
Journal on Computing, 22:838–856, 1993.

[5] A. Razborov, E. Szemerédi, and A. Widgerson.
Constructing small sets that are uniform in arith-
metic progressions. Combinatorics, Probability and
Computing, 2:513–518, 1993.

FIT2010（第 9回情報科学技術フォーラム）

180

（第1分冊）

