FIT2009 8

A-012

Experiment about ElGamal signature on GnuPG

Kazuki Tsubof

1. Introduction

Nowadays, cryptography is sought for in a variety
of applications. These applications include even the
normal user’s daily usage of the Internet. For example,
we wish to protect private information such as credit
card numbers and personal addresses, data stored on a
hard disk, our email, and so on. Clearly, any company
or governmental institution has even much more data
that should be protected.

So, the problem is which cryptographic software one
should use. On the one hand, looking at the progress
made in the last decades, one is tempted to think that
there is more and more secure cryptography around.
On the other hand, if no source code is available, how
can we be sure that the cryptography implemented is
really reliable and secure? Looking at the relevant liter-
ature is rapidly resulting in the insight that the one can-
not be too careful. The border between good and bad
cryptography is very thin, see e.g., [1, 2, 4]. Often, im-
portant details are overlooked when cryptographic al-
gorithms or cryptographic protocols are implemented.
As a results, the implemented versions may become
vulnerable to specifically chosen attacks.

2. The ElGamal Signature Scheme

GnuPG v1.2.3 allowed for the usage of the ElGamal
signature scheme [3] used for both signature and en-
cryption. Therefore, we first describe this scheme here.

Let H be a hash function. By default, the SHA-1
hash function is used in GnuPG v1.2.3. Furthermore,
let p be a large prime, and let g be a randomly chosen
generator of Z,*. These numbers be shared as public
information.

For the key generation scheme, choose randomly a
number x which satisfies 1 < z < p—1. This number is
the private key. Next GnuPG computes y = ¢g* mod p.
The public key is (p, g,y). Note that the private key x
is also used for making the signature scheme.

The ElGamal signature scheme uses the public key
when performing encryption and verifying a signature.

3. Key Generation

We need a prime p such that p — 1 has only large
prime factors. Usually, we try p = 2¢ + 1. Here ¢
has to be necessarily a large prime number. So, one

tGraduate School of Information Science and Technology,
Hokkaido University.

259

Thomas Zeugmann'

chooses a large prime number ¢, computes p = 2¢ + 1
and checks whether or not p = 2¢ + 1 is prime. If it is,
we have found a desired p. But if p is not a prime, we
have to retry with a different q.

This may be time consuming. Thus, the actual
implementation in GnuPG v1.2.3 uses a different ap-
proach. Here the so-called Wiener table is used to en-
sure that p—1 has only large prime factors. More specif-
ically, p is chosen in generate_elg_prime of the file ci-
pher/primegen.c. And a generator g is computed by
the function generate of the file cipher/elgamal.c.

Once p is selected, a generator g is found by test-
ing successively potential generators, starting with the
number 3. If 3 is not a generator, the next number
tested is 4, and so on. By construction, all factors of
(p — 1)/2 have at least gp;z > 119 bits, and g > 2.

However, as we shall see below, the most significant
deviation from the theoretical requirements occurs in
GnuPG v1.2.3 when it comes to selecting x. In the
actual implementation, the private exponent x is not
chosen as a random number modulo p — 1, because
decryption will be much faster when the bit-length of
is less than 3qp /2.

3.1 Signature

Next, we describe the signature scheme.

Signature: The signature of a message already for-
matted as an integer m modulo p, is the pair (a, b)
where:

g" modp; 1)
(m —azx)k ™ modp—1. (2)

S
|

S8
|

Here k € Z is a “random” number being coprime with
p — 1. Furthermore, the implementation ensures that
the bit-length of & is not less than 3qp;:/2bits.

Verification: For verifying a signature, the public key
is used. So, let a signature (a, b) be given. GnuPG
verifies a signature (a, b) by checking if

0<a<p; (3)
g™ =y®a® mod p . (4)

If (3) and (4) are fulfilled, the verifier accepts the
signature (a, b).

FIT2009 8

First, note that such a signature verification does not
prevent malleability: if (a,b) is a valid signature of m
then (a,b+u(p—1)) is another valid signature of m for
all u € Z, because there is no range check over b.
Second, the correctness of this verification is ob-
tained as follows. By construction (cf. Equation (2)):

m=ax+bkmodp—1. (5)
Recalling that y = ¢” mod p and using (1), by Fer-
mat’s little theorem we obtain:

gm = ga;cgbk mod P
(9%
y®a® mod p .

(9")" mod p

4. Implementing the Attack

Next, we describe how we did implement the attack
found by [4] which is based on using the weakness of
(5). This weakness is caused by the fact that k and z
are unusually small.

As INPUT we have a public key (p,g,y) and a sig-
nature (a,b) of the message m having been signed by
using (p, g,9).

The OUTPUT is then the private key x.

We wrote the code in the following steps. First,
we installed the GnuMP library, since we need multi-
precision integer arithmetic (called MPI). Second, we
installed Shoup’s [5] NTL library which is used to solve
the closest vector problem (abbr. CVP).

4.1 Preparation

When initializing GnuPG v1.2.3, it can output two
types of files. The first one is an octet stream (binary)
file having the extension gpg. The second one is in
radix-64 format (i.e., in ASCII). The radix-64 output
is used to publicize the public key, e.g., on a web-page.
For example, the hexadecimal description of a public
key is shown in Figure 1 and the radix-64 output is

99 02 0d 04 4a 41 £7 55 14 04 00 e4 {7 88 de 44

Figure 1: Hexadecimal format sample

displayed in Figure 2. Note that the expressions in
Figures 1 and 2 describe the same public key. How-
ever, the hexadecimal expression uses 8 bits per sym-
bol, while the radix-64 encoding uses only 6 bits per
symbol. Thus, in radix-64 two bits are not visible.

So, in order to implement the attack, one has to
perform a hex-to-ascii transformation (see Figure 3),
where “99 02 0d 04” expresses “10011001 00000010
00001101 00000100” as bit stream. Now “100110”
stands for m, “010000” for Q, and so on. To continue

260

1

—BEGIN PGP PUBLIC KEY BLOCK—
Version: GnuPG v1.2.3 (GNU/Linux)

mQENBEpB91UUBADKYA. ..

=4HR1
—END PGP PUBLIC KEY BLOCK—

Figure 2: ASCII output sample

+--first octet--+-second octet--+--third octet--+
|176543210|76543210l76543210|
o ————— ot +—————— F—— +

|[543210/543210/543210/543210]
+--1.index--+--2.index--+--3.index--+--4.index——+

Figure 3: Correspondence of bits

and for verification purposes, two more steps are neces-
sary. The gpg file is processed by using the od program:

od OUTPUT.gpg -txl > united-OUTPUT.txt.

Then we decode the radix-64 encoding. Radix-64 en-
coding is easy to decode because it is an extended en-
coding of BASE 64 that is defined RFC 2045 - MIME.
The only difference is that CRC octets are appended
to the tail in Radix-64 encoding. We then wrote a pro-
gram called Radix-64.c to decode the ASCII output.
This program returns the same output as obtained by
the od call described above.

Omitting details, now we have a file looking as shown
in Figure 4 which can be used as input to MPI.

The following code transforms this input to the large
integer type mpz_t x of GnuMP:

i = (bitlength + 7)/8;
while(i>= O&&get (input)){
x+=input*25671i;
i--;

3

After these steps, we execute the attack to compute
the private key x from the public key (p, g,y) and the
signature (a, b) of a signed message m.

0400 [f1 9a 6d ce b5 ... |

Figure 4: Input to MPI

FIT2009 8

4.2 Executing the Attack

In the signature scheme in GnuPG v1.2.3, the sig-
nature (a,b) satisfies ak + bx = m mod p — 1. Here
m is actually the value f(message), where f is a hash
function. The default hash function is SHA-1, but one
can also choose MD5, SHA-256, SHA-384, and so on.
The hash function is used to ensure that the length
of message is undecidable. But m may be to short
to prevent a simple attack. Therefore, the signature
scheme adds the prefix octets that contains default pre-
fix octets as defined by the Abstract Syntax Notation
One(ASN.1) and many zeros like 10....0 to make m long
enough (see Figure 5) (where SHA-1 is used as hush
function, and the constant is “30 21 30 09 06 05 2b Oe
03 02 1a 05 00 04 14”). By doing this, the programmers
of GnuPG expected that the signature is safe. But this

[1000 ... 00 [Constant | f(message) |

Figure 5: Octet stream of m

trick does not help, since k and x are unusually small.
The attack proceeds a follows. Search (K, z’) satisfy-
ing ak’ + ba’ = m mod p — 1. This is done by using
the extended Euclidean algorithm. Next, we compute
two lattice vectors [; and lo, where u has to satisfy

au—&—b(%):Omod;ﬂ—l,
p ged(a, p)

h=(—20),ly=(u -LT~20).

! (gcdw,p)) : (“ gcd(mb,p))

Then 1,15 forms a two-dimensional lattice L.
4.3 The Lattice Attack
The correspondence between the size of p and the

threshold is given by the so-called Wiener table. Note
that 4qp;¢ is always less than the bit-length of p.

Bit-length of p | 512 | 1024 | 1536 | 2048
Qbit 119 | 165 | 198 | 225
Bit-length of p | 2560 | 3072 | 3584 | 4096
Qbit 249 | 269 | 288 | 305

Figure 6: The Wiener table

Now, we have the lattice L and the target vector
t = (k' — 23aie/271 2/ — 234:/271) We compute the
lattice vector [that is closest to ¢ in the lattice L. This
is done by using Shoup’s [5] NTL library. Finally, let
l = (I4,1y), then the private key x is 2’ — 1.

5. Result

Our results are displayed in Figure 7. Each experi-
ment has been run 100 times. As we see, all keys have
been broken quickly.

261

Key length | 768 | 1024 | 1280 | 1536 | 1792
Time(s) | 0.030 | 0.069 | 0.132 | 0.224 | 0.359
Key length | 2048 | 2304 | 2560 | 2816 | 3072
Time(s) | 0.545 | 0.803 | 0.938 | 1.204 | 1.516
Key length | 3328 | 3584 | 3340 | 4096
Time(s) | 1.977 | 2.359 | 2.731 | 3.244

Figure 7: Results of our experiments

In GnuPG version 1.2.3, the maximum key length is
4096 bits. However, due to the weak implementation
even a longer key length would be of no help.

6. Conclusions

As we have seen, using some standard software
packages and implementing the rest ourselves allowed
for breaking the ElGamal signature scheme as imple-
mented in GnuPG version 1.2.3 using the attack dis-
covered by Nguyen [4]. This clearly shows that one can
never be too careful when using cryptographic software.
In particular, the source must be available, since oth-
erwise no verification is possible.

References

[1] D. Bleichenbacher. Generating ElGamal signa-
tures without knowing the secret key. In Advances
in Cryptology—EUROCRYPT 96, volume 1070 of
Lecture Notes in Computer Science, pages 10-18.
Springer-Verlag, 1996.

[2] D. Bleichenbacher. Breaking a cryptographic proto-
col with pseudoprimes. In Public Key Cryptography
- PKC 2005, 8th International Workshop on The-
ory and Practice in Public Key Cryptography, Les
Diablerets, Switzerland, January 23-26, 2005, Pro-
ceedings, volume 3386 of Lecture Notes in Computer
Science, pages 9-15. Springer, 2005.

[3] T. ElGamal. A public key cryptosystem and a sig-
nature scheme based on discrete logarithms. IEEFE
Trans. Inform. Theory, 1T-31(4):469-472, 1985.

[4] P. Q. Nguyen. Can we trust cryptographic soft-
ware? Cryptographic flaws in gnu privacy guard
v1.2.3. In Advances in Cryptology - EUROCRYPT
2004, International Conference on the Theory and
Applications of Cryptographic Techniques, Inter-
laken, Switzerland, May 2-6, 2004, Proceedings,
volume 3027 of Lecture Notes in Computer Science,
pages 555—570. Springer, 2004.

[5] V. Shoup. Number theory C++4 Li-
brary (NTL) version 5.3.1. Available at
http://www.shoup.net/ntl/.

