
Mining Rebate Systems

Skip Jordan∗

1 Introduction

The Data Mining Cup1 is an annual, international, student
competition in data mining. This year, 688 participants of

159 universities from 40 countries considered the applica-

tion of data mining to optimizing rebate coupons. The task

was to mine customer coupon redemption history in order

to identify potential coupon users and the type of coupon

these customers are likely to respond to.

We introduce the task, discuss some statistical proper-

ties of the data, describe our implementation of instance-

based classification, and report on our techniques searching

for better-performing parameters. Our submission ranked

#47 and was the highest scoring non-European submission.

We also provide some ideas for improving our performance.

2 Background

Rebate systems and couponing are important tools for re-

tailers. Although issuing coupons incurs a cost, if additional

revenue is generated and customers retained or increased,

the expenditure is likely to be justified. The widespread

use of membership cards allows retailers to make individu-

alized decisions at checkout regarding which coupon to issue

a customer. Using past customer history, it is possible to

apply data mining techniques to estimate which coupon will

optimize the benefit to the retailer.

Training data was provided regarding a trial run of a

new coupon, which was available in two varieties, A and

B. During the trial run, 50,000 customers were given both

coupons. The data includes the coupon redeemed by each:

neither coupon (N), A or B. Cases in which both A and B
were redeemed were discarded before the training data was

produced. For each of these 50,000 customers, the training

data includes a 22-tuple consisting of their ID number, the

number of times that they redeemed each of past coupons

1 to 20, and the result of the trial (N, A or B). There were

3,307 redemptions of A, 8,668 of B and 38,026 of neither.

An additional 50,000 lines of test data was provided

with the results of the trial stripped (21-tuples, ID num-

bers and the number of redemptions for each of the same

20 past coupons). Issuing no coupon (N) results in no cost

to the retailer. Issuing an unredeemed coupon costs 1 unit.

Issuing a coupon A that is redeemed gives a benefit of 3,

while a redeemed B gives a benefit of 6. Thus, denoting

the size of the group assigned X that actually redeemed Y
in the trial run as |XY |, the goal was to provide a set of

50,000 assignments for the test data maximizing

C := 3|AA|+6|BB|−(|AB|+|AN |+|BA|+|BN |). (1)

Each participant submitted a set of assignments for the

test set to be scored by the organizers.

3 Implementation

We examined the 20-tuples of coupon redemption history in

the training data and noticed that if a 20-tuple is present,

then it is usually present multiple times. More precisely,

48,639 (97.3%) lines of the test data occur exactly at least

once in the training data. As an extreme example, one tuple

of coupon redemption history occurs 6,134 times (12.3%) in

the test data and 6,062 times in the training data.

Given this information, and making the assumption

that information is not encoded in ID numbers, we con-

sider classifying based on exact duplicates. For example,

the 20-tuple consisting of zeros (customers who did not re-

deem any past coupons) is present 844 times in the training

data. Although we might expect these customers to also ig-

nore the new coupon, only 1 of them did so. In this group,

626 redeemed A and 217 redeemed B. This provides an es-

timate on a probability distribution for the 20-tuple of all

zeros. We wish to maximize (1), and so in this case assign

A to all 795 test elements that are zero vectors.

Our algorithm, given an input vector v of past customer

history to which we wish to assign a coupon, is essentially:

for (d=0 to infinity)
Find all u with distance(u,v) at most d.
If the number of such u is < THRESHOLD,
increment d and repeat the loop.

For each possible assignment (A,B or N),
compute C over these u.

Return the assignment maximizing C.

If two (or more) assignments result in exactly the same

expected value of C, we compare three tie-breaking meth-

ods: conservative, where N is chosen in ties involving it,

and A chosen in A-B ties, aggressive, where B is chosen in

ties involving it and A chosen in A-N ties, and lazy, where

we increment d and postpone the assignment.

∗Graduate School of Information Science and Technology, Hokkaido University, email: skip@ist.hokudai.ac.jp
1http://www.data-mining-cup.com/

25

A-011

FIT2007（第6回情報科学技術フォーラム）

Next we discuss our search for a suitable threshold and

distance function.

4 Threshold

Our implementation refuses to classify instances for which

an insufficient number of sufficiently similar training exam-

ples exist. In these cases, it increases the distance which it

considers acceptable and tries again. The idea is to avoid

giving excessive influence to individual training points. A

threshold of one effectively disables the parameter.

The following is a plot of scores on one random 10-

fold cross-validation for each of the threshold tie-breaking

strategies at thresholds from 1 to 100.

 6000

 6200

 6400

 6600

 6800

 7000

 7200

 0 10 20 30 40 50 60 70 80 90 100

Conservative
Aggressive

Lazy

We chose a threshold value of 21 and a conservative

strategy. Using this threshold seemed to consistently give

a 1,000 point gain. It is close to the maximum, and we

preferred to use the lower threshold.

5 Distance measure

We considered Euclidean distance, squared Euclidean dis-

tance, Manhattan distance (1-norm), and the number of

differing attributes to determine the distance between two

vectors of coupon redemption history. The latter two are

in some senses quite intuitive: we can imagine a customer

was sick on a given day, accidentally lost a coupon, or per-

haps there was an error in data entry. Two coupon histories

that differ on only a single attribute seem likely to be corre-

lated. Using the Manhattan distance is a slight refinement

of the idea, a customer who uses a given coupon twice is

likely closer to someone who uses it once than to someone

who doesn’t use it. Multiple redemptions of a given coupon

are rare in the provided data, but examples do exist (in

the training set, 721 (1.4%) customers redeemed a coupon

twice and 16 (0.03%) redeemed a coupon three times).

That the Euclidean distance and squared Euclidean dis-

tance have different effects is a result of using a fixed dis-

crete increment in the distance at which we consider a train-

ing point similar.

The four distance measures performed fairly similarly,

however for every 10-fold cross-validation run that we an-

alyzed, the Manhattan distance slightly outperformed the

others and squared Euclidean distance outperformed Eu-

clidean distance. The results are summarized in Table 1.

“Split 1” refers to using the first 45,000 lines of training

data for training and last 5,000 for test. “Split 2” refers to

using one random 45,000:5,000 split. The “10-fold” column

refers to the arithmetic mean of scores over at least ten

10-fold cross-validation runs. All scores use a threshold of

21 and are computed using C, see (1).

Classifier Split 1 Split 2 10-fold

Manhattan 647 812 7131

Euclid2 646 812 7046

Euclid 643 819 6966

NumberD 641 808 7066

Table 1: Comparison of distance measures

6 Weighting function

We then considered a weighting w on the attributes used

when computing the distance measures. We would then

define squared weighted Euclidean distance for example, as

dist(a, b) =
20∑

i=1

wi(ai − bi)2,

where the wi are real numbers. The unweighted variant

sets all wi = 1.0.

To find a suitable set of weights within time constraints,

we first restricted our attention to the top representative

measures from the two types: Manhattan distance and

squared Euclidean distance. We used the following weight-

finding algorithm.

Perform two separate random 10-fold splits.
Set oldscore=bestscore=-infinity.
for (j=1 to 40)

Do 10-fold cross-validation runs on each.
Set newscore to be the sum of these scores.

1: If newscore>oldscore,
set oldscore=newscore, oldweights=w.
If newscore>bestscore,

set bestscore=newscore, bestweight=w.
If oldscore>newscore,

set w=oldweights.
Randomly choose a weight to modify.
Randomly choose a non-zero v, -0.25<v<0.25.
Add v to the weight, use new weights as w.

Repeat the entire algorithm indefinitely.

We also changed line 1 to allow non-beneficial changes

with very low probability in order to hopefully move away

from local optima. Thus, we tune our weights to optimize

the mean of two random 10-fold cross-validation splits, fre-

quently changing these splits to avoid excessive changes in

response to “bad” splits.

26

FIT2007（第6回情報科学技術フォーラム）

Scores of weighted algorithms using a threshold of 21

appear in Table 2. The columns have the same meaning as

above. Scores here use weights derived randomly using the

above algorithm for at least 24 hours.

Classifier Split 1 Split 2 10-fold

wManhattan 717 800 7267

wEuclid2 671 774 7278

Table 2: Comparison of weighted distance measures
The difference in the last column is not statistically sig-

nificant, and in most additional cases we observed, Man-

hattan distance wins by 2-3 points. Weighting seems more

important than the precise choice of distance measure.

We continued tuning weights until shortly before the

deadline, performing additional tests intended to prevent

regression.

7 Combining models

We used various techniques to combine our models and

classification schemes from Weka[1]. Our first technique,

〈X, Y 〉, classifies inputs using classifier X , unless X ’s out-

put is N, in which case it classifies unconditionally as Y .

The notation can be nested. The idea was to use a very ac-

curate classifier as X and a more aggressive classifier as Y ,

hopefully minimizing A-B confusion. However, this method

of combination was consistently beaten by the next method.

We next considered a simple plurality vote, denoted

here with hard brackets, which can also be nested. Tied

votes are broken aggressively, choosing B first and then A.

The results of various combinations of classifiers are given

in Table 3. New classifier names represent the correspond-

ing classifier in Weka, using default settings except for

cost-sensitive classification per C. All Weka scores would

presumably improve with individual attention, however we

investigated hundreds of combinations. Due to technical

details of our implementation and time constraints, the

10-fold column here represents one random split, not an

average over multiple splits. Combinations involving the

same classifier use different weights for each instance. We

abbreviate wManhattan as “wMan,” wEuclid2 as “wEuc2”,

and NumberD as “NumD”.

Classifier Split 1 Split 2 10-fold

[[wMan, wMan], BayesNet] 730 819 7335

[wMan, wMan] 724 813 7271

[wMan, BayesNet] 719 800 7329

[wMan, wEuc2], BayesNet] 713 789 7362

[wEuc2, BayesNet] 687 796 7334

[NumD, BayesNet] 675 811 7166

Table 3: Comparison of classifier combinations
Upon further examining the output of these classifiers,

we noticed that the set of assignments generated by our clas-

sifiers changed drastically (over 1,000 lines) in comparison

to the score improvement (30-40 points) when combined

with BayesNet.

8 Results

We chose to submit what we denote as [wManhattan,

wManhattan] with the sets of tuned weights separated by

approximately 24 hours of tuning. These were the last pair

of weights we were able to test to our satisfaction, and were

derived after approximately a week of CPU time. Due to a

relative lack of data and the comparatively large changes

for comparatively small (but present) gain of combining

with BayesNet with our techniques, we were unwilling to

take what we perceived as a risk. The choice of wManhat-

tan over wEuclid2 was primarily intuition; we were able to

imagine a real meaning in the Manhattan distance in this

particular case.

Our final score was 7,140, somewhat lower than the av-

erage of our score on 10-fold cross-validations, but within

the range of our scores. This difference is possibly due to

the test set containing more N than the training set or

over-training weights. The winning score was 7,890.[2]

9 Future improvements

There were a number of improvements that we were unable

to implement and test for regressions due to the time con-

straints of the contest. In the future we plan to tune weights

in a more systematic fashion (possibly with hill-climbing),

which would drastically decrease tuning time. Additionally,

although our classifier estimates a probability distribution

for input vectors, it does not give these distributions when

it votes. That is, a classifier that feels 80% confident in

its classification should be treated differently than one that

only feels 4% confident.

Our meta-process was to choose first a threshold, then a

distance measure and weighting function, and finally a com-

bination thereof. It would be better to choose these simulta-

neously, that is, the threshold may depend on the weighting

function. This search should also be further automated.

Although our search algorithms produced large tables of

scores, decisions about parameters were made manually.

Acknowledgements

The author wishes to thank his supervisor, Prof. Thomas

Zeugmann, for his encouragement and guidance in this

project.

References

[1] Ian H. Witten and Eibe Frank. Data Mining: Prac-
tical Machine Learning Tools and Techniques. Mor-
gan Kaufmann Publishers, 2005.

[2] DMC 2007 Student Results,
www.data-mining-cup.com/2007/Wettbewerb/Preise/.

27

FIT2007（第6回情報科学技術フォーラム）

