Balanced（ C_{4}, C_{12} ）－2t－Foil Decomposition Algorithm of Complete Graphs

Kazuhiko Ushio
Department of Informatics
Faculty of Science and Technology
Kinki University
ushio＠info．kindai．ac．jp

1．Introduction

Let K_{n} denote the complete graph of n vertices．Let C_{4} and C_{12} be the 4 －cycle and the 12 －cycle，respec－ tively．The $\left(C_{4}, C_{12}\right)$－ $2 t$－foil is a graph of t edge－ disjoint C_{4}＇s and t edge－disjoint C_{12}＇s with a common vertex and the common vertex is called the center of the $\left(C_{4}, C_{12}\right)$－2t－foil．In particular，the $\left(C_{4}, C_{12}\right)$－2－ foil is called the $\left(C_{4}, C_{12}\right)$－bowtie．When K_{n} is de－ composed into edge－disjoint sum of $\left(C_{4}, C_{12}\right)$－2t－foils， we say that K_{n} has a $\left(C_{4}, C_{12}\right)$－ $2 t$－foil decomposition． Moreover，when every vertex of K_{n} appears in the same number of（ C_{4}, C_{12} ）－2t－foils，we say that K_{n} has a balanced $\left(C_{4}, C_{12}\right)$－2t－foil decomposition and this number is called the replication number．
Note that $\left(C_{4}, C_{12}\right)$－ $2 t$－foil has $14 t+1$ vertices and $16 t$ edges．

It is a well－known result that K_{n} has a C_{3} decom－ position if and only if $n \equiv 1$ or $3(\bmod 6)$ ．This decomposition is known as a Steiner triple system． See Colbourn and Rosa［2］and Wallis［15］．Horák and Rosa［3］proved that K_{n} has a $\left(C_{3}, C_{3}\right)$－bowtie decomposition if and only if $n \equiv 1$ or $9(\bmod 12)$ ． This decomposition is known as a bowtie system． In this sense，our balanced $\left(C_{4}, C_{12}\right)$－2t－foil decompo－ sition of K_{n} is to be known as a balanced $\left(C_{4}, C_{12}\right)$－ $2 t$－foil system．

2．Balanced $\left(C_{4}, C_{12}\right)$－ $2 t$－foil decomposi－ tion of K_{n}

Theorem．K_{n} has a balanced $\left(C_{4}, C_{12}\right)$－2t－foil de－ composition if and only if $n \equiv 1(\bmod 32 t)$ ．

Proof．（Necessity）Suppose that K_{n} has a bal－ anced $\left(C_{4}, C_{12}\right)$－2t－foil decomposition．Let b be the number of $\left(C_{4}, C_{12}\right)$－ $2 t$－foils and r be the replica－ tion number．Then $b=n(n-1) / 32 t$ and $r=$ $(14 t+1)(n-1) / 32 t$ ．Among $r\left(C_{4}, C_{12}\right)$－ $2 t$－foils hav－ ing a vertex v of K_{n} ，let r_{1} and r_{2} be the numbers of $\left(C_{4}, C_{12}\right)$－2t－foils in which v is the center and v is not the center，respectively．Then $r_{1}+r_{2}=r$ ．Counting the number of vertices adjacent to $v, 4 t r_{1}+2 r_{2}=$ $n-1$ ．From these relations，$r_{1}=(n-1) / 32 t$ and $r_{2}=14(n-1) / 32$ ．Therefore，$n \equiv 1(\bmod 32 t)$ is
necessary．
（Sufficiency）Put $n=32 s t+1, T=s t$ ．Then $n=32 T+1$ ．
Construct a $\left(C_{4}, C_{12}\right)-2 T$－foil as follows：
$\{(32 T+1,2 T+1,9 T+2,3 T+1),(32 T+1,1,4 T+$ $2,14 T+2,24 T+3,12 T+2,29 T+3,13 T+2,26 T+$ $3,15 T+2,6 T+2, T+1)\} \cup$
$\{(32 T+1,2 T+2,9 T+4,3 T+2),(32 T+1,2,4 T+$ $4,14 T+3,24 T+5,12 T+3,29 T+5,13 T+3,26 T+$ $5,15 T+3,6 T+4, T+2)\} \cup$
$\{(32 T+1,2 T+3,9 T+6,3 T+3),(32 T+1,3,4 T+$
$6,14 T+4,24 T+7,12 T+4,29 T+7,13 T+4,26 T+$
$7,15 T+4,6 T+6, T+3)\} \cup \ldots \cup$
$\{(32 T+1,3 T, 11 T, 4 T),(32 T+1, T, 6 T, 15 T+1,26 T+$ $1,13 T+1,31 T+1,14 T+1,28 T+1,16 T+1,8 T, 2 T)\}$ ． （16T edges， $16 T$ all lengths）
Decompose the $\left(C_{4}, C_{12}\right)$－ $2 T$－foil into $s\left(C_{4}, C_{12}\right)$－2t－ foils．Then these s starters comprise a balanced $\left(C_{4}, C_{12}\right)$－2t－foil decomposition of K_{n} ．

Corollary．K_{n} has a balanced $\left(C_{4}, C_{12}\right)$－bowtie de－ composition if and only if $n \equiv 1(\bmod 32)$ ．

Example 1．A $\left(C_{4}, C_{12}\right)$－2－foil of K_{33} ．
$\{(33,3,11,4),(33,1,6,16,27,14,32,15,29,17,8,2)\}$ ． （16 edges， 16 all lengths）
This starter comprises a balanced $\left(C_{4}, C_{12}\right)$－2－foil de－ composition of K_{33} ．

Example 2．A $\left(C_{4}, C_{12}\right)$－4－foil of K_{65} ．
$\{(65,5,20,7),(65,1,10,30,51,26,61,28,55,32,14,3)\} \cup$ $\{(65,6,22,8),(65,2,12,31,53,27,63,29,57,33,16,4)\}$ ． （32 edges， 32 all lengths）
This starter comprises a balanced $\left(C_{4}, C_{12}\right)$－4－foil decomposition of K_{65} ．

Example 3．A $\left(C_{4}, C_{12}\right)$－6－foil of K_{97} ．
$\{(97,7,29,10),(97,1,14,44,75,38,90,41,81,47,20,4)\}$ \cup
$\{(97,8,31,11),(97,2,16,45,77,39,92,42,83,48,22,5)\}$ \cup
$\{(97,9,33,12),(97,3,18,46,79,40,94,43,85,49,24,6)\}$ ． （48 edges， 48 all lengths）
This starter comprises a balanced $\left(C_{4}, C_{12}\right)$－ 6 －foil decomposition of K_{97} ．

Example 4．A $\left(C_{4}, C_{12}\right)$－8－foil of K_{129} ．
$\{(129,9,38,13),(129,1,18,58,99,50,119,54,107,62,26,5)\}$
\cup
$\{(129,10,40,14),(129,2,20,59,101,51,121,55,109,63,28,6)\}$ \cup
$\{(129,11,42,15),(129,3,22,60,103,52,123,56,111,64,30,7)\}$ \cup
$\{(129,12,44,16),(129,4,24,61,105,53,125,57,113,65,32,8)\}$ ． （64 edges， 64 all lengths）
This starter comprises a balanced $\left(C_{4}, C_{12}\right)$－8－foil decomposition of K_{129} ．

Example 5．A $\left(C_{4}, C_{12}\right)$－10－foil of K_{161} ．
$\{(161,11,47,16),(161,1,22,72,123,62,148,67,133,77,32,6)\}$
\cup
$\{(161,12,49,17),(161,2,24,73,125,63,150,68,135,78,34,7)\}$ \cup
$\{(161,13,51,18),(161,3,26,74,127,64,152,69,137,79,36,8)\}$ \cup
$\{(161,14,53,19),(161,4,28,75,129,65,154,70,139,80,38,9)\}$
\cup
$\{(161,15,55,20),(161,5,30,76,131,66,156,71,141,81,40,10)\}$ ．
（80 edges， 80 all lengths）
This starter comprises a balanced $\left(C_{4}, C_{12}\right)$－10－foil decomposition of K_{161} ．

References

［1］C．J．Colbourn，CRC Handbook of Combinato－ rial Designs，CRC Press，1996．［2］C．J．Colbourn and A．Rosa，Triple Systems，Clarendom Press，Ox－ ford，1999．［3］P．Horák and A．Rosa，Decomposing Steiner triple systems into small configurations，Ars Combinatoria，Vol．26，pp．91－105， 1988. ［4］C． C．Lindner，Design Theory，CRC Press，1997．［5］ K．Ushio，G－designs and related designs，Discrete Math．，Vol．116，pp．299－311， 1993 ．［6］K．Ushio， Bowtie－decomposition and trefoil－decomposition of the complete tripartite graph and the symmetric complete tripartite digraph，J．School Sci．Eng． Kinki Univ．，Vol．36，pp．161－164，2000．［7］K． Ushio，Balanced bowtie and trefoil decomposition of symmetric complete tripartite digraphs，Information and Communication Studies of The Faculty of Infor－ mation and Communication Bunkyo University，Vol． 25，pp．19－24，2000．［8］K．Ushio and H．Fujimoto， Balanced bowtie and trefoil decomposition of com－ plete tripartite multigraphs，IEICE Trans．Funda－ mentals，Vol．E84－A，No．3，pp．839－844，March 2001．［9］K．Ushio and H．Fujimoto，Balanced foil decomposition of complete graphs，IEICE Trans． Fundamentals，Vol．E84－A，No．12，pp．3132－3137， December 2001．［10］K．Ushio and H．Fujimoto， Balanced bowtie decomposition of complete multi－ graphs，IEICE Trans．Fundamentals，Vol．E86－A， No．9，pp．2360－2365，September 2003．［11］K． Ushio and H．Fujimoto，Balanced bowtie decomposi－ tion of symmetric complete multi－digraphs，IEICE

Trans．Fundamentals，Vol．E87－A，No．10，pp． 2769－2773，October 2004．［12］K．Ushio and H．Fu－ jimoto，Balanced quatrefoil decomposition of com－ plete multigraphs，IEICE Trans．Information and Systems，Vol．E88－D，No．1，pp．19－22，January 2005．［13］K．Ushio and H．Fujimoto，Balanced C_{4}－bowtie decomposition of complete multigraphs， IEICE Trans．Fundamentals，Vol．E88－A，No．5， pp．1148－1154，May 2005．［14］K．Ushio and H． Fujimoto，Balanced C_{4}－trefoil decomposition of com－ plete multigraphs，IEICE Trans．Fundamentals，Vol． E89－A，No．5，pp．1173－1180，May 2006．［15］W．D． Wallis，Combinatorial Designs，Marcel Dekker，New York and Basel， 1988.

