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Abstract This paper studies the problem of stack-queue mixed layouts of graph subdivisions.
Dujmović and Wood showed that for every integer s, q > 0, every graph G has an s-stack q-
queue subdivision layout with 4⌈log(s+q)q sn(G)⌉ (resp. 2+4⌈log(s+q)q qn(G)⌉) division vertices
per edge, where sn(G) (resp. qn(G)) is the stack number (resp. queue number) of G. This
paper improves these results by showing that for every integer s, q > 0, every graph G has
an s-stack q-queue mixed subdivision layout with 2⌈logα sn(G)⌉ +2 (resp. 2⌈logα qn(G)⌉ +4)
division vertices per edge, where α is a function of s and q satisfying α >

√
(s+ q)q.

Keywords graph layout, number of subdivisions of graphs, stack layout of graphs, queue
layout of graphs, stack-queue mixed layout of graphs.

1 Introduction

A vertex ordering of a graph G is a total order of the vertex set V (G). In a vertex ordering
< of a graph G, let L(e) and R(e) denote the endpoints of each edge e ∈ E(G) such that
L(e) < R(e). Consider two edges e, f ∈ E(G). If L(e) < L(f) < R(e) < R(f) then e and f
cross, and if L(e) < L(f) < R(f) < R(e) then e and f nest. A stack (resp. queue) is a set
of edges E ⊂ E(G) such that no two edges in E cross (nest). Observe that when traversing
the vertex ordering, edges in a stack (queue) appear in LIFO (FIFO) order - hence the names.
Note that if two edges of a graph share a vertex, then they neither cross nor nest.

For an integer k > 0, a k-stack (queue) layout of G consists of a vertex ordering of G and
a partition {Ei | 1 ≤ i ≤ k} of E(G), such that each Ei (which is called a page) is a stack
(queue). The stack number sn(G) of a graph G is the minimum k such that there is a k-stack
layout of G. The queue number qn(G) of a graph G is the minimum k such that there is a
k-queue layout of G.

Applications and results regarding stack and queue layouts can be found in [3, 7, 9] etc.
Stack layouts of graphs can be regarded as book embeddings of graphs. Thus, results for book
embedding problems ([1, 2, 4, 5, 6, 8, 10] etc.) also hold true for stack layout problems.

Stack and queue layouts are generalized through the notion of a mixed layout. Here each
edge of a graph is assigned to a stack or to a queue that is defined with respect to a common
vertex ordering. Such a layout is called an s-stack q-queue layout, if there are s stacks and q
queues, Part of the motivation for studying stack-queue mixed layouts is that they model the
double-ended queue (dequeue) data structure, since a dequeue may be simulated by two stacks
and one queue.
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This paper studies stack-queue mixed layouts of graph subdivisions. Every graph can be
embedded in a stack-queue mixed layout with the limited number of stacks and queues by
subdividing edges. Therefore, the next goal is to reduce the number of subdivisions as much
as possible when we subdivide each edges. Thus,it is interesting to determine the minimum
number of division vertices in a stack-queue mixed layout of a subdivision of a given graph.

Dujmović and Wood [3] showed the following theorem:

Theorem 1 (Dujmović and Wood [3])

(1) For all integers s ≥ 1 and q ≥ 1, every graph G has an s-stack q-queue mixed subdivision
with at most 4⌈log(s+q)q sn(G)⌉ division vertices per edge.

(2) For all integers s ≥ 1 and q ≥ 1, every graph G has an s-stack q-queue mixed subdivision
with at most 2 + 4⌈log(s+q)q qn(G)⌉ division vertices per edge.

Let α =
s+q−1+

√
(s+q−1)2+4q

2 be the positive root of X2 − (s + q − 1)X − q = 0, and β be
the negative root. Define

h(n) = min{k | α
k+1 − βk+1 + αk − βk

α− β
≥ n}.

The following theorem improves Theorem 1, because α >
√

(s+ q)q and h(n) ≤ ⌈logα n⌉.

Theorem 2 For all integers s ≥ 1 and q ≥ 1, every graph G has s-stack q-queue mixed
subdivisions with at most 2h(sn(G))+2 and 2h(qn(G))+4 division vertices per edge, respectively.

We prove Theorem 2 by constructing a 1-stack 1-queue mixed layout of a newly defined
(s, q)-ary tree. This construction method is not a direct extension of the one given in Dujmović
and Wood [3], because not all leaves are laid out at the right end in our layout.

2 Newly defined (s, q)-ary tree and its 1-stack 1-queue mixed
layout

For all integers s, q > 0, consider a rooted tree (named (s, q)-ary tree T ) directed from the root
to leaves, which has two types of edges called stack-type edges and queue-type edges as follows.
In the tree T , all leaves are at the same depth h. Note that every node except the root has
indegree 1 in a rooted tree. The root has s + q outgoing edges, s of them are stack-type and
q of them are queue-type. For every non-leaf node of T , if the type of incoming edge is stack,
then it is incident with s− 1 outgoing stack-type edges and q outgoing queue-type edges and if
the type of incoming edge is queue, then it is connected with s outgoing stack-type edges and
q outgoing queue-type edges.

Then, we symbolize the node set V (T ) and an edge set E(G) of this (s, q)-ary tree T with
depth h as follows:

V (T ) = {a1a2 · · · ak | 0 ≤ k ≤ h, 0 ≤ ai < s+ q, ai+1 ̸= ai if ai < s}．

E(T ) = {(v, va)|v, va ∈ V (T ), 0 ≤ a < s+ q}．

For a string
a = a1 · · · ah,
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let a(i) be the string consisting of the first i digits of a,

a(i) = a1 · · · ai

and a(0) be the empty string ϵ.
Then, for two strings a, b ∈ R, let define a lexicographic-like ordering a ≺R b of a string

set R, which has only stack-type edges when one of the following conditions holds where
a ̸= b(= b1...bℓ),

• There exists an integer i where a = b(i) holds．

• There exists an integer i where a(i) = b(i) and ai+1 < bi+1 hold.

For example, if s = 2 and h = 3, then we have;

ϵ ≺R 0 ≺R 01 ≺R 010 ≺R 1 ≺R 10 ≺R 101.

For a node v, define the path Pv which goes from the root to the node v. For a string
v = a1a2 · · · ak, let w(v) be the number of queue-type edges included in the path Pv as follows.

w(v) = ♯{i | 1 ≤ i ≤ k, ai ≥ s}

Note that u ∈ R if and only if w(u) = 0.
Then if w(v) > 0, we can decompose a node (string) v uniquely as follows:

v = p(v)q(v)r(v)

Where,

p(v) ∈ V (T )

s ≤ q(v) < s+ q

r(v) ∈ R.

Note that q(v) is the rightmost queue-type edge in the string of v. For two nodes u, v ∈
V (T )(u ̸= v), define the node ordering u ≺ v when one of the following three conditions
(R1 −R3) holds. Then, the node ordering u ≺ v gives a total order on V (T ).

• w(u) < w(v) (R1)

• u, v ∈ R and u ≺R v (R2)

• w(u) = w(v) > 0 and one of the following conditions holds: (R3)

– p(u) ≺ p(v)

– p(u) = p(v) and q(u) < q(v)

– p(u) = p(v), q(u) = q(v) and r(u) ≺R r(v)

For example, if s = 2, q = 1 and h = 3, then the node set is as follows; also see Figure 1.

V (T ) = {ϵ, 0, 1, 2, 01, 02, 10, 12, 20, 21, 22, 010, 012, 020, 021, 022,

101, 102, 120, 121, 122, 201, 202, 210, 212, 220, 221, 222}．

Using this ordering, we have a 1-stack 1-queue mixed layout of T .
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Figure 1: (2,1)-ary tree of height 3 and its 1-stack 1-queue mixed layout

Proposition 3 Queue-type edges form a 1-queue and stack-type edges form a 1-stack.

Proof. For two nodes a, b ∈ T , let a = a1a2 · · · ak, b = b1b2 · · · bℓ, a′ = a(k−1) = a1a2 · · · ak−1,
and b′ = b(ℓ− 1) = b1b2 · · · bℓ−1.

First, we will show that queue-type edges form a 1-queue, i.e., no two edges in the queue
nest each other.

Assume that two edges (a, a′) and (b, b′) nest in the queue. We may assume that endpoints
of the two edges are laid out from left to right in the order

a′ ≺ b′ ≺ b ≺ a. (∗)

Because both two edges are in the queue page, we have w(a) = w(a′)+1 and w(b) = w(b′)+1.
Then from the assumption

w(a′) ≤ w(b′) ≤ w(b) = w(b′) + 1 ≤ w(a) = w(a′) + 1,

we have w(a′) = w(b′) and w(a) = w(b). Thus, if this assumption (*) is true, then both the
first and the last inequlities have to hold the condition R3. However, if a′ ≺ b′ then we have
a ≺ b beacause p(a) = a′ and p(b) = b′ which contradicts the last inequality of the assumption
(*).

Thus all queue-type edges form a 1-queue.
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Next, we will show that stack-type edges form a 1-stack, i.e., no two edges in the stack
cross each other.

Assume that two edges (a′, a) and (b′, b) cross in the stack. We may assume that endpoints
of the two edges are laid out from left to right in the order

a′ ≺ b′ ≺ a ≺ b.

Because both two edges are in the stack page, we have w(a) = w(a′) and w(b) = w(b′).
Then from the assumption

w(a′) ≤ w(b′) ≤ w(a)(= w(a′)) ≤ w(b)(= w(b′)),

we have w(a′) = w(a) = w(b′) = w(b).
Consider the case of w(a′) = w(a) = w(b′) = w(b) = 0, i.e., a, b ∈ R (condition R2). Then

we can rewrite the assumption as

a′ ≺R b′ ≺R a ≺R b. (∗∗)

Suppose a = b(i) for i ≤ ℓ. Then we have i = ℓ because the second inequality of the
assumption (**) is

b′ = b1b2 · · · bℓ−1 ≺R a = b(i).

Then a = b(i) = b(ℓ) = b which contradicts the assumption.
Suppose a(i) = b(i) and ai+1 < bi+1 for i < ℓ.

1. If i < ℓ− 1, the second inequality of the assumption (**)

b′ = b1b2 · · · bℓ−1 ≺R a = a1a2 · · · ak

contradicts the assumption ai+1 < bi+1.

2. If i = ℓ− 1, then we have a(ℓ− 1) = b(ℓ− 1) and aℓ < bℓ.

(a) If k ≤ ℓ then from the assumption (**)

b′ = b(ℓ− 1)(= a(ℓ− 1)) ≺R a1a2 · · · ak,

we have ℓ − 1 < k(≤ ℓ). Thus we have ℓ = k. Then we have a′ = a(k − 1) =
a(ℓ− 1) = b(ℓ− 1) = b′ which contradicts the assumption a′ ̸= b′.

(b) If ℓ < k, then it contradicts the first inequality of the assumption (**) because,

a1a2 · · · ak−1(= a(ℓ− 1)aℓ · · · ak−1) ≺R b(ℓ− 1) = a(ℓ− 1).

Consider the case of w(a′) = w(a) = w(b′) = w(b) > 0 (condition R3). If, w(a′) =
w(b′) > 0, then we have

p(a′) = p(b′), q(a′) = q(b′), r(a′) ≺ r(b′), r(a) = r(a′)ak ≺ r(b) = r(b′)bℓ.

Thus in this case, for the same reason as the case of w(a′) = w(a) = w(b′) = w(b) = 0
(i.e. a, b ∈ R), we can derive the contradiction.

Thus we have proved that stack-type edges form a 1-stack, i.e., no two edges in the stack
cross each other.
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3 Stack-queue mixed layouts of graph subdivisions

In this section, we prove Theorem 2.
The flow of the proof with respect to constructing a stack-queue mixed layout of graph

subdivisions by using the stack number is as follows.
First we constract a special tree T called (s, q)-ary tree. Consider the stack layout S of

graph G, which has sn(G) pages. Let call the maximum value among levels in the tree T
”height.” We use the (s, q)-ary tree T in which the number of leaves of the tree, which is one
level lower than the height of T , is greater than or equal to sn(G).

Next, we constract a stack-queue layout of a given graph G by using the tree T and the
stack layout S as follows.

Allocate all the vertices of G to the root of T . For example see Figure 4. Vertices x∗i are
allocated in the leftmost part of this layout which correspond to the root of T .

Allocate each page of the stack layout S of G to each leaf that is incident to a queue-type
edge. For example, a stack which is drawn in Figure 2 is deformed as shown in Figure 3 and
allocated in the rightmost part of this layout which correspond to a leaf of T as shown in Figure
4.

Connect vertices x and y in G along the (s, q)-ary tree T through the leaf corresponding
to the page of S on which x and y are incident: That is, let e = (x, y) ∈ S. Then connect
vertices x, y ∈ G from x∗ to y∗ (in the root of T ) along the (s, q)-ary tree T through vx,e and
vy,e in a leaf of T . Where both vx,e and vy,e are the endvertices of the edge e in the page of the
stack-queue mixed layout which is corresponding to the leaf of T where we construct a page
contained e of S as shown in Figure 4.

In detail, if the m-th page of the stack layout S is as shown in Figure 2, we separate each
edge independently as shown in Figure 3. Then attach these edges to the corresponding leaef
of T that is incident to a queue-type edge.

We construct a layout of a subdivided graph G∗ where each edge goes to the leaf along T
that corresponds to the page of the stack layout S of G that contains the edge. That is, we
arrange the vertices of G as in the stack layout S of G, and then put all subdivided vertices on
the right of them with appropriate order as follows. See also Figure 4.

Split the root of the tree T into | V (G) | vertices {x∗i }. Also, split the leaf corresponding
m-th stack page into 2 | Em | vertices {xi,k}, where Em is the set of edges on the m-th stack
page. Connect vertices xi,k and xj,k in G∗ when there is an edge k of G that connects vertices
xi and xj in S. And connect x∗i and xi,k along the 1-stack 1-queue mixed layout of the tree T
from root to the leaf m (see Figure 4). Each node in the level ℓ in T between the path from
x∗i and xi,k in G∗ (which corresponds to the half of the edge k in G) become division vertices
of G∗.

Here, the height of the tree is h(sn(G)) + 1 (as to the proof, see Page 7). Then the number
of subdivisions is “the height of the tree ×2.” Note that if the number of stack-type edges
contained in the path from the root to a leaf is odd then we have to reverse the vertex ordering
of {xi,k}.

Remember that in section 2, we symbolize the node set V (T ) and an edge set E(G) of this
(s, q)-ary tree T with depth h as follows:

V (T ) = {a1a2 · · · ak | 0 ≤ k ≤ h, 0 ≤ ai < s+ q, ai+1 ̸= ai if ai < s}．

E(T ) = {(v, va)|v, va ∈ V (T ), 0 ≤ a < s+ q}．

The pages used for edges obtained by the subdivision are defined as follows; for a division-
edge e which corresponds to the stack-type edge (v, va) in the (s, q)-ary tree T , color the edge
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x 1 x 2 x 3 x 4 x 5 x 6

Figure 2: The mth page of the stack layout S of G

x 1,2 x 1,1 x 2,1 x 3,2 x 3,5 x 3,3 x 4,3 x 4,4 x 5,4 x 6,5

 leaf m in T

Figure 3: Edges attached to the leaf m of the layout of G∗

root in T leaf m in TA node in T

Edges in G*
vertices in G

Figure 4: Layout of G∗

e as a.

The proof with respect to constructing a stack-queue mixed layout of graph subdivisions
by using the queue number is also accomplished in the same way. Consider the queue layout Q
of graph G, which has qn(G) pages. We use the (s, q)-ary tree T in which the number of leaves
of the tree one level lower than T is greater than or equal to qn(G). Allocate all vertices of G
to the root of T . Allocate each page of the queue layout Q of G to each leaf that is incident
to a queue-type edge. Connect vertices x and y in G along T through the leaf corresponding
to the page of Q on which x and y are incident. However, in the case of queue number, it is
necessary to devise the layout so that the queue pages of Q attached on the leaves of T should
not nest the queue edges laid out along the tree T in the layout of the graph subdivision.

Thus we devise the parts of the leaves of the 1-stack 1-queue mixed layout of T as follows.
We focus on the fact that, on each page of 1-stack 1-queue mixed layout of T , there are no
stack-type edges in the above area of pages which correspond to the leaves of T incident to
queue-type edges.

(The reason is as follows. Suppose that there is a stack-type edge above the leaf v that is
incident to a queue-type edge. Let the stack-type edge be e and L(e) = u. Then R(e) = ua
(0 ≤ a < s) and L(e) ≺ v ≺ R(e).

Decompose u and v as follows. Note that w(u) > 0 because w(v) > 0 and v ≺ R(e).

u = p(u)q(u)r(u)

v = p(v)q(v)r(v).

7
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As the leaf v is incident to a queue-type edge, we have

s ≤ q(v) < s+ q, r(v) = ϵ.

From conditions u ≺ v and v ≺ ua, we can derive the contradiction. That is, because
of ua = p(ua)q(ua)r(ua), we have p(ua) = p(u)，q(ua) = q(u)，r(ua) = r(u)a. Because of
w(u) = w(ua), and the definition of u ≺ v and v ≺ ua, we have w(u) = w(v) = w(ua).
If p(u) ≺ p(v), then we have p(ua) ≺ p(v), and this contradicts v ≺ ua. Thus we have
p(u) = p(v) = p(ua). If q(u) < q(v), we have q(ua) < q(v) and this contradicts v ≺ ua.
Therefore, we have q(u) = q(v) = q(ua). In this case, because the condition u ≺ v, we have
r(u) ≺R r(v). Here, this contradicts r(v) = ϵ. Thus we have proved the nonexistence of such
an edge.)

Therefore, we take all leaves incident with queue-type edges to the right end of the stack-
queue mixed layout by using stack-type edges on any stack-type pages. Then, there are no queue
edges above leaves, and so we can construct a stack-queue mixed layout of graph subdivisions
by attaching each page of Q to each leaf locally. In this layout, the height of the tree increases
by 1, and so we need two extra subdivision points for each page.

In this section, we add 2h(sn(G)) + 2 or 2h(qn(G)) + 4 subdivisions to each edge of G to
construct a stack-queue mixed layout of G∗. Where h(n) + 1 is the height of T , which is used
to construct a stack-queue mixed layout.

The number of h(n) is as follows. Let sk be the number of stack-type edges and qk be the
number of queue-type edges between levels k − 1 and k. Then we have,

s1 = s

q1 = q

sk+1 = (s− 1)sk + sqk

qk+1 = q(sk + qk).

Note that sh + qh is the number of leaves in the height h of the tree T .
By solving the recursive relations, we get

sk =
(αk − βk)s

α− β
, qk =

(αk+1 − βk+1)− (s− 1)(αk − βk)

α− β
.

Here,
h(n) = min{k | sk + qk ≥ n}

is “the height of the (s, q)-ary tree -1”, where

sk + qk =
αk+1 − βk+1 + αk − βk

α− β
．

Therefore we have proved Theorem 2.

Let k = ⌈logα n⌉. Then

sk + qk − αk =
(αk − βk)(β + 1)

α− β
.

Here, s = (α+1)(β+1) > 0 and αβ = −q ≤ −1, thus −1 < β < 0 and α > 1. Then, | α |>| β |．
Therefore sk + qk − αk > 0. Thus sk + qk > αk ≥ n, and so we have h(n) ≤ ⌈logα n⌉.

8
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Also, because of α > s+ q − 1, if s ≥ 2 then

α > s+ q − 1 >
√

(s+ q)q.

If s = 1, by using q ≥ 1, we have α >
√

(q + 1)q.
Thus Theorem 2 improves Theorem 1.

The following below table is the table comparing the values of
√

(s+ q)q and α when
2 ≤ s ≤ 5 and q = 1. Each value is rounded in the third decimal place.√

(s+ q)q α

s = 2 1.73 2.41
s = 3 2 3.30
s = 4 2.24 4.24
s = 5 2.45 5.19

Also, the following below table is the table comparing the numbers of leaves in two different
types of (s, 1)-ary trees. One was the number of leaves in the tree used by V. Dujmović and
D. R. Wood [3], and the other is the number of leaves which are incident to queue-type edges
in the tree we have newly defined in this paper.

Depth of (s, 1)-ary tree 2 3 4 5 6 7

s = 2 Number of leaves in previous result 3 9 27
Number of leaves in our result 3 7 17 41 99 239

s = 3 Number of leaves in previous result 4 16 64
Number of leaves in our result 4 13 43 142 469 1549

s = 4 Number of leaves in previous result 5 25 125
Number of leaves in our result 5 21 89 377 1597 6765

s = 5 Number of leaves in previous result 6 36 6 216
Number of leaves in our result 6 31 161 836 4341 22541

4 Conclusion

In this paper, by constructing a 1-stack 1-queue mixed layout of a newly defined (s, q)-ary
tree, we have proved that every graph G has s-stack q-queue mixed subdivisions with at most
2h(sn(G))+2 and 2h(qn(G))+4 division vertices per edge, respectively, where, h(n) = min{k |
sk + qk ≥ n}. The base of the number of subdivision’s logarithm of our result is greater than
that of the mixed layout constructed by Dujmović and Wood [3]. Thus we have improved the
Dujmović and Wood’s result. This result improves the Dujmović and Wood’s result [3]. We
don’t know whether this result is best possible or not.
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