

Design of User Support System for Combating against Malware

 Nobutaka Kawaguchi*1 Takayuki Yoda*1 Tatsunoshin Kawaguchi*1 Toshihiko Kasagi*2 Yuji Hosizawa*3

 *１ Hitachi, Ltd. *2 KDDI Corporation *3 SecureBrain Corporation

Abstract-- In paper, we describe a design of a user support
system for comprehensive countermeasures against malware by
coordinating various anti-malware functions that are developed
by different security organizations individually. As a lot of new
malware appears every day, most of conventional anti-malware
solutions relying on signature strings become less effective. In
meantime, many security organizations develop their own anti-
malware functions such as behavior analyzers. However, it is
difficult for most end users with little knowledge on security to
effectively utilize them, because each of the functions
implements only a part of the procedure required for malware
countermeasures, and the single use of each function does not
achieve comprehensive solution. Our proposed system divides
the procedure into several functions, and allows each security
organizations to focus on developing particular functions
individually, taking advantage of their expertise and strength.
Then, the system coordinates the various anti-malware functions
through standardized interfaces, and provides end users with a
comprehensive countermeasure, ranging from suspicious file
detection in user PCs to malware removal from user PCs.

1. Introduction
In these days, many new species and variants of malware are

appearing everyday. Existing conventional anti-malware
software, which is installed in users PCs and relies on signature
strings, has become less effective because the rate of signature
update can no longer keep up with a rate at which new malware
appears. Moreover, many recent malware is equipped with
functions of dynamically changing the appearance such as file
structure to evade detection.

 To counter against the malware, anti-malware web services
that detect and remove malware from users PCs are emerging. In
the services, suspicious files or their signatures in users PC are
uploaded to the service cites and analyzed. If malware is detected
through the analysis, the corresponding vaccine is generated and
distributed to users. The services gather latest threat information
in real-time and frequently update the large-scale signature
databases in order to catch up with new kinds of malware
immediately.

 However, developing and running such services will impose
significant costs and burdens on the providers, because they need
to design, implement and integrate all the steps necessary to
counter malware, ranging from suspicious file transmission
between PCs and service cites to the generation of vaccine
programs. Thus, we consider that only a few large venders with
abundant resources can operate such services.

 In the meantime, many security vendors and research
institutions are developing their own original anti-malware
functions such as behavior analyzers and whitelist databases,
which we will describe in later sections. Some of the functions
are promising approaches using the latest technologies, and can

be more effective than the corresponding parts of the integrated
services. However, since the single use of each function does not
achieve a comprehensive solution against malware, it is not easy
for average PC users without knowledge on malware or security
to make use of the functions effectively.

We are now developing a system for malware countermeasure
by coordinating various such anti-malware functions provided by
different security organizations. The aim of this system is to
provide PC users with a rapid and comprehensive solution
against new malware with low cost compared to the densely
integrated services. While each of the anti-malware functions is
insufficient for the comprehensive countermeasure from
suspicious files detection to malware removal, combination use
of the functions will achieve the goal.

This system divides the procedure required for the
comprehensive countermeasure into several functions such as
malware analyzer and vaccine program generator, and allows
each security organization to focus on developing particular
functions individually, taking advantage of their expertise and
strength. Finally, the functions are coordinated with others, and
operate as a single service. This approach makes the system keep
up with new trends of malware without high cost.

To coordinate the functions, this system defines standardized
interfaces for each type of functions. Then, the functions are
loosely bounded to the system coordinators through the
interfaces.

As far as we know, this is the first approach that achieves a
comprehensive countermeasure against malware by coordinating
individually developed anti-malware functions.

 The rest of paper is organized as follows. In Section 2, we
discuss works related to malware countermeasures. In Section 3,
we describe the design of our system and anti-malware functions.
Finally, Section 4 concludes this paper and shows future works.

2. Related Works

2.1 Malware detection without signatures
 As conventional anti-malware solutions using signature

strings of malware becomes ineffective against recent malware,
new approaches are now emerging. In this section, we introduce
two attractive approaches that detect malware without malware
signatures: behavior analysis and whitelisting.

 Behavior analysis detects malware based on the behavior.
There are a few platforms for behavior analysis such as Nicter [2]
and others [1][3][6]. In the analysis, a target program is executed
on controlled environments such as virtual machines, and how it
behaves in the environments is monitored. For example,

x Files and registries the program accesses, creates, deletes

and modifies,
x APIs the program calls
x Processes the program starts or stops
x Servers the program contacts

FIT2010（第 9回情報科学技術フォーラム）

241

L-030

（第4分冊）

x Packets the program sends and receives

are recorded using API hooking and packet capturing. After

the programs have been run for a few minutes, the platforms
classify the program into either of malware or benign program
based on the observations.

 Whitelisting is another approach for malware detection.
Whitelist is a list that includes hash values of known programs
which are verified to be non-malicious. In whitelisting, programs
not included in the list are classified as suspicious or malicious.
This approach has an advantage that it rarely causes false
negatives, and therefore is effective in detecting unknown
malware. Now, there are some large whitelist databases available.
For example, National Software Reference Library (NSRL)
publishes a list of millions of MD5 and SHA-1 hashes computed
from known benign programs [4].

 Although the two approaches are essential to combat against
new malware, neither achieves comprehensive countermeasures.
In behavior analysis, users are required to select files to be
analyzed, and manually upload them to the analysis platforms. In
addition, when malware is detected, it is quite a difficult task for
average users to completely revert changes on PCs caused by the
malware, since malware usually create, modify and delete
various files and registries.

On other hand, whitelisting has a critical drawback that benign
programs that are not listed in the whitelist cause false positives.
It is practically impossible to include hashes of all the existing
benign programs completely in the whitelist.

2.2 Combination of anti-malware functions
 There is quite a limited number of works on combining

several anti-malware functions to achieve high-performance
countermeasure. CloudAV [5] is a platform for integrating
multiple malware detectors, including traditional AV tools and
behavior analysis systems. In the system, target files are checked
by various detectors, and the final judgments are done based on
the aggregated results. However, this system only supports a part
of countermeasure: automated file uploading from use PC to the
platform, and detection of the files. Even if a file is deemed
malware, no vaccine programs are provided to users. Moreover,
since no standardized interface is defined, the operator needs to
manually integrate each detector with the platform, which will be
very cumbersome.

3. Proposed System

3.1 Concept
As mentioned in the Introduction, the proposed system

coordinates various anti-malware functions, which are developed
by different organizations, in order to achieve comprehensive
countermeasure with low cost. Here, in our definition,
comprehensive countermeasure includes the steps of automated
suspicious file listing, malware analysis and detection, vaccine
program generation and malware removal.

 The most significant differences between our approach and
existing ones are as follows:

x Proposed system conducts not only detection but

comprehensive countermeasure against malware by using
various types of anti-malware functions.

x By dividing the procedure for countermeasure into a few
types of anti-malware functions and defining their
standardized interfaces, this system easily interchange
various functions that implement the interface. Also,
developers can focus on only the particular part of this
system in which they have expertise and strengths.

The comprehensiveness of countermeasure and division of
labor of the development enable the proposed system to keep up
with the advances of new malware.

 The targets of this system range widely, from mobile users to
enterprise users. In particular, we aim at providing
countermeasures to not only high-end desktop PCs but also
mobile devices such as smart phones that have quite limited CPU
power and storage space. As mobile devices become complex,
there is an increasing need for protecting mobile devices. Thus,
anti-malware functions at user side should be lightweight and not
consume many computation resources in mobile devices.

3.2 System Overview
Figure.1 shows the overview of this system. The system

divides the countermeasure into four types of anti-malware
functions: the suspicious file detector, the benign file filter, the
malware analyzer and the vaccine program generator. Also, there
are two types of coordinators: the client agent and the server
agents installed in user PC and user support center respectively.
The coordinators coordinate the functions and serve them as a
single security service to PC users.

In the following sections, we describe how this system detects
and then removes malware from user PCs, and details on roles
and requirements of the four anti-malware functions.

3.3 Procedure of detection and removal
We describe the procedure of detection and removal of

malware step by step.

1. First of all, a user downloads the client agent from

the user support center. When executed, the client
agent runs suspicious file detector routinely, and
obtains a list of suspicious files at the PC.

2. The client agent transmits the suspicious files to
the server agent, along with the environment
information of the PC. Before transmission, the
agent shows the user a list of suspicious files. Then,
the user removes files that should not be
transmitted from the list. After the user approves
the list, the files are transmitted. For safe
transmission, each file is encrypted with a key
shared between the user support center and each
client agent.

3. On receiving the suspicious files, the server agent
decrypts the files and passes them to the benign
file filter. The filter returns whether the files are
known benign files or not. Then, the server agent
sends list of known benign files to the client agent.
The list is cached in the client agent, and the
corresponding files will be never sent to the server
agent again.

4. The server agent sends the remaining unknown
files and the environment information to the

FIT2010（第 9回情報科学技術フォーラム）

242

（第4分冊）

malware analyzer. Then, the malware analyzer
outputs an analysis report including detection
result for each file. The list of files classified as
begin by the analyzer is cached in the server agent
and the client agent.

5. The server agent sends files which are determined
as malware, the analysis reports and the
environment information to the vaccine program
generator, and then obtains the vaccine programs.

6. The server agent sends the vaccines to the client
agent. The client agent executes them on the user
PC to remove malware. The results of the
executions are fed back to the server agent if the
user will. On the server agent side, vaccines that
are proved to work appropriately are cached, and
are later prescribed to users who send the same
malware files.

As shown above, the server agent caches vaccine programs

and files classified as begin. The caches will be significantly
effective in reducing requests for anti-malware functions and,
shorten the response time taken to prescribe vaccines to the users.
For instance, since the regular update of operating systems will
involve the installation of new unknown files, many users will
send the same files at the update. Also, when malware pandemic
happens, many users will need the same vaccine programs.

3.4 Suspicious File Detector
The suspicious file detector is a component installed in a user

PC. The requirement for the detector is to scans files in the PC
under the control of the client agent, and detects suspicious files
while keeping almost zero false negatives. Note that the aim of
this detector is not to detect malware, but rather to detect
suspicious files. Suspicious files are executables that can possibly
be malware. Using this detector, the proposed system determines
candidate programs to be sent to malware analyzers and vaccine
program generators. Thus, malware that the detector fails to
detect will be never analyzed or removed from PCs. Therefore,
quite small false negative rate is required for the detector. On the
other hand, certain amounts of false positives are allowed in
return, although this can cause burdens on systems and networks.

 While we leave the implementation details for developers, one
typical approach for achieving the requirements is to classify all
executables that do not have digital signatures issued by trusted
parties as suspicious. More sophisticated approaches may check
features specific to malware such as very long file name and anti-
debugging codes. Since scanning all files in PCs can impose high
overload on PCs, full scans should be performed only when CPU
usage rate is low enough.

Next, we briefly describe the interface between the detector
and the client agent. The communication is done through
directories and files. When the detector finds a suspicious file, it
creates a file that includes the suspicious file path and the
detection time. Then, the detector puts the file into a specified
directory. The client agent monitors the directory and obtains the
lists of suspicious files.

3.5 Benign file filter
The benign file filter is a filter that takes suspicious files as

input, and returns whether the files are known benign files or not.
The proposed system uses the filter to reduce the number of files

that the malware analyzers need to analyze. Thus, the benign
filter is positioned as a preprocessing step of malware detection.
Whitelisting, which we discussed in Section.2, is a typical
implementation of the filter.

The communication between the server agent and the benign
file filer is done through SOAP messages. Currently, we define
one operation, checkSample. checkSample is used to judge
whether an input file is a known benign file. The response of this
operation is either of true or false.

3.6 Malware Analyzer
The malware analyzer analyzes an input file, and returns

whether the file is malware or not. Behavior analysis, which we
discussed in Section 2, is a typical approach. Another approach is
static analysis that inspects the structure of the file [8]. An
important requirement for the malware analyzer is to output an
analysis report, which is used to generate vaccine programs in
later. While the format of analysis report is under formalization
currently, it should include information on whether the analyzed
file is malware or not, and changes caused by malware to the PC
such as file/registry modification, creation and deletion. For
example, reports should include entries like that:

Suspicious
File

Detector

Client
Agent

(1)Generate a list of
suspicious files

(2)send
suspicious
files

(3)filter known benign files

(4)request to
analyze suspicious
files

(5)Send analysis
report and obtain
vaccine programs

(6)transmit
vaccine
programs and
execute them

User PC User Support Center

Malware
Analyzer

Security Vendors
Research Institutes

Security Vendor

install

anti-malware function

Interface between
agent and function

Server
Agent

vaccine
program
generator

Security Vendor

Benign File
Filter

Security and
software vendors

Figure 1 System Overview

<ANALYSIS>

<FILE_NAME> sample.exe </FILE_NAME>
<SHA-1 HASH> 123456789abc…</SHA-1 HASH>
<CLASSIFICATION> Malware </CLASSIFICATION>
<BEHAVIOR>

<CREATE_FILE> C:\malware.exe </CREATE_FILE>
<MODIFY_FILE> C:\WINDOWS </MODIFY_FILE>

</BEHAVIOR>
</ANALYSIS>

Since the behavior of malware could depend on the execution

environments, the malware analyzer may need environment
information on the user PC that submits the file (e.g. versions and
settings of operating system and installed applications) for
accurate analysis. While most existing analyzers do not use this

FIT2010（第 9回情報科学技術フォーラム）

243

（第4分冊）

information, we handle this information as an option of the input
interfaces.

The communication between the server agent and the malware
analyzer is done through SOAP messages. We currently define
three types of operations; registerSample, getAnalyzedID, and
getReport. registerSample is used to register a file to be
analyzed. The response of this operation is a register ID. The
server agent checks whether the analysis is completed by
getAnalyzedID. This operation takes register IDs as input, and
return register IDs of files that the analyzer has already analyzed.
Finally, reports are retrieved by calling getReport with a register
ID as input.

3.7 Vaccine Program Generator
The vaccine program generator generates vaccine programs

that remove malware and revert PCs back to the original states.
The generator is required to be equipped with two functionalities:
vaccine generation based on analysis reports, and verification of
the generated vaccine programs.

To generate a vaccine program for a malware, the generator
uses the analysis reports to obtain information on changes caused
by the malware on PCs. Based on the information, how the
vaccine program recovers a compromised PC is determined.
Especially, recovering files/registries that are modified or deleted
is a challenging task. According to [7], only about 75% of
primary files (e.g. .exe, .bat, .dll) and 4% of the remaining files
can be reverted by using existing anti-malware tools.

After generating a vaccine, the generator verifies that it
removes the malware and related data properly without causing
harmful effects to PCs. For verification, the target malware, and
then the vaccine program are executed on a test environment that
is configured with environment information of the PC submitting
the malware, and then whether the environment is properly
reverted to the original state or not is checked. To certainly
remove malware that exhibit different behavior each time it is
executed, through verification is required. After verification is
completed, the vaccine program is passed to the server agent.

Currently, the interface between the server agent and the
vaccine program generator is under formalization

4. Conclusion and Future works
In paper we have described a design of a user support system

for comprehensive countermeasures against malware by
coordinating four types of anti-malware functions developed by
various security organizations individually.

This system differs from existing approaches in that this
system achieves not only detection but comprehensive
countermeasure against malware, and that the required
procedures are divided into independent functions with
standardized interfaces.

 In future works, we will fix the requirements and interfaces of
anti-malware functions, and implement the reference model with
Nicter as a malware analyzer. Then, we will evaluate the
performance of this system through experiments.

ACKNOWLEDGEMENT
This research is supported by the National Institute of

Information and Communications Technology, Japan.

REFERENCES

[1] C.Willems, et al.,“Toward Automated Dynamic Malware
Analysis Using CWSandbox”, IEEE Security and Privacy
Magazine, Vol.5, Issue 2, 2007.

[2] D.Inoue, et al.,“An Incident Analysis System nicter and Its
Analysis Engines Based on Data Mining Techniques”, Proc.
of ICONIP2008, 2008.

[3] Anubis: Analyzing Unknown Binaries,
http://anubis.iseclab.org/, accessed at 02/16/2010.

[4] National Software Reference Library, http://nsrl.nist.gov/,
accessed at 02/16/2010.

[5] Jon Oberheide, et al., CloudAV: N-Version Antivirus in the
Network Cloud, In Proc. of the 17th Usenix Security
Symposium, July, 2008.

[6] Norman Solutions. Normand sandbox whitepaper,
http://download.norman.no/whitepapers/whitepaper_Norman_
SandBox.pdf, 2003.

[7] Emanuele Passeriniy, et al., “How good are malware detectors
at remediating infected systems?”, In Proc. of DIMVA’09,
2009.

[8] Christopher Kruegel, et al., “Polymorphic worm detection
using structural information of executables”, In Proc. of
RAID’05 ,2005.

FIT2010（第 9回情報科学技術フォーラム）

244

（第4分冊）

